Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52881 by ajfour last updated on 14/Jan/19

Commented by ajfour last updated on 14/Jan/19

To find r in terms of a,b,c.

$${To}\:{find}\:\boldsymbol{{r}}\:{in}\:{terms}\:{of}\:{a},{b},{c}. \\ $$

Commented by mr W last updated on 14/Jan/19

can it be confirmed that  r=((2bc)/(a+b+c))(√(((a+b−c)(a+c−b))/((a+b+c)(b+c−a))))

$${can}\:{it}\:{be}\:{confirmed}\:{that} \\ $$$$\boldsymbol{{r}}=\frac{\mathrm{2}\boldsymbol{{bc}}}{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}}\sqrt{\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{c}}\right)\left(\boldsymbol{{a}}+\boldsymbol{{c}}−\boldsymbol{{b}}\right)}{\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)\left(\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}\right)}} \\ $$

Commented by ajfour last updated on 14/Jan/19

nice result Sir, how d′ya get this ?

$${nice}\:{result}\:{Sir},\:{how}\:{d}'{ya}\:{get}\:{this}\:? \\ $$

Commented by behi83417@gmail.com last updated on 14/Jan/19

r=((bc)/p)tg(A/2). it is true sir mrW.

$${r}=\frac{{bc}}{{p}}{tg}\frac{{A}}{\mathrm{2}}.\:{it}\:{is}\:{true}\:{sir}\:{mrW}. \\ $$

Commented by MJS last updated on 14/Jan/19

...and please re−check 52061, I get a different  result

$$...\mathrm{and}\:\mathrm{please}\:\mathrm{re}−\mathrm{check}\:\mathrm{52061},\:\mathrm{I}\:\mathrm{get}\:\mathrm{a}\:\mathrm{different} \\ $$$$\mathrm{result} \\ $$

Commented by MJS last updated on 14/Jan/19

see my answer to qu. 52806

$$\mathrm{see}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{to}\:\mathrm{qu}.\:\mathrm{52806} \\ $$

Commented by mr W last updated on 15/Jan/19

MJS sir: your result for r is the same.  it can also be formed to  r=((2bc)/(a+b+c))(√(((a+b−c)(a+c−b))/((a+b+c)(b+c−a))))

$${MJS}\:{sir}:\:{your}\:{result}\:{for}\:{r}\:{is}\:{the}\:{same}. \\ $$$${it}\:{can}\:{also}\:{be}\:{formed}\:{to} \\ $$$${r}=\frac{\mathrm{2}{bc}}{{a}+{b}+{c}}\sqrt{\frac{\left({a}+{b}−{c}\right)\left({a}+{c}−{b}\right)}{\left({a}+{b}+{c}\right)\left({b}+{c}−{a}\right)}} \\ $$

Commented by mr W last updated on 15/Jan/19

MJS sir: your result for Q52061 seems  not to be correct.

$${MJS}\:{sir}:\:{your}\:{result}\:{for}\:{Q}\mathrm{52061}\:{seems} \\ $$$${not}\:{to}\:{be}\:{correct}. \\ $$

Commented by MJS last updated on 15/Jan/19

I will look into 52061 once more  I saw that the other result is the same as yours,  I thought you might have achieved it throuhh  a different path

$$\mathrm{I}\:\mathrm{will}\:\mathrm{look}\:\mathrm{into}\:\mathrm{52061}\:\mathrm{once}\:\mathrm{more} \\ $$$$\mathrm{I}\:\mathrm{saw}\:\mathrm{that}\:\mathrm{the}\:\mathrm{other}\:\mathrm{result}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{yours}, \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{you}\:\mathrm{might}\:\mathrm{have}\:\mathrm{achieved}\:\mathrm{it}\:\mathrm{throuhh} \\ $$$$\mathrm{a}\:\mathrm{different}\:\mathrm{path} \\ $$

Answered by ajfour last updated on 15/Jan/19

From power of point Q w.r.t.   circumcircle:     (2Rcos φ−(r/(sin θ)))(r/(sin θ)) = r(2R−r)  ___________________________  ⇒  2Rcos φ = (r/(sin θ))+(2R−r)sin θ                                                          ......(i)  ___________________________  further   Rcos (θ+φ)=(b/2)   &                         Rcos (θ−φ)=(c/2)  Adding:   2Rcos φcos θ=((b+c)/2)  So  using (i)   (r/(tan θ))+Rsin 2θ−((rsin^2 θ)/(tan θ))=((b+c)/2)  but   ((sin 2θ)/a) = (1/(2R))    ⇒    ((rcos^2 𝛉)/(tan 𝛉)) =((b+c−a)/2)         r = (((b+c−a))/(1+cos A))(√((1−cos A)/(1+cos A)))        = (((b+c−a))/((((2bc+b^2 +c^2 −a^2 )/(2bc)))))(√((2bc−b^2 −c^2 +a^2 )/(2bc+b^2 +c^2 −a^2 )))  r = ((2bc)/((a+b+c)))(√(((a+b−c)(a+c−b))/((b+c+a)(b+c−a)))) .

$${From}\:{power}\:{of}\:{point}\:{Q}\:{w}.{r}.{t}.\: \\ $$$${circumcircle}: \\ $$$$\:\:\:\left(\mathrm{2}{R}\mathrm{cos}\:\phi−\frac{{r}}{\mathrm{sin}\:\theta}\right)\frac{{r}}{\mathrm{sin}\:\theta}\:=\:{r}\left(\mathrm{2}{R}−{r}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\Rightarrow\:\:\mathrm{2}{R}\mathrm{cos}\:\phi\:=\:\frac{{r}}{\mathrm{sin}\:\theta}+\left(\mathrm{2}{R}−{r}\right)\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......\left({i}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${further}\:\:\:{R}\mathrm{cos}\:\left(\theta+\phi\right)=\frac{{b}}{\mathrm{2}}\:\:\:\& \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}\mathrm{cos}\:\left(\theta−\phi\right)=\frac{{c}}{\mathrm{2}} \\ $$$${Adding}:\:\:\:\mathrm{2}{R}\mathrm{cos}\:\phi\mathrm{cos}\:\theta=\frac{{b}+{c}}{\mathrm{2}} \\ $$$${So}\:\:{using}\:\left({i}\right) \\ $$$$\:\frac{{r}}{\mathrm{tan}\:\theta}+{R}\mathrm{sin}\:\mathrm{2}\theta−\frac{{r}\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{tan}\:\theta}=\frac{{b}+{c}}{\mathrm{2}} \\ $$$${but}\:\:\:\frac{\mathrm{sin}\:\mathrm{2}\theta}{{a}}\:=\:\frac{\mathrm{1}}{\mathrm{2}{R}}\:\:\:\:\Rightarrow \\ $$$$\:\:\frac{\boldsymbol{{rcos}}^{\mathrm{2}} \boldsymbol{\theta}}{\boldsymbol{{tan}}\:\boldsymbol{\theta}}\:=\frac{\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{r}}\:=\:\frac{\left(\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}\right)}{\mathrm{1}+\boldsymbol{{cos}}\:{A}}\sqrt{\frac{\mathrm{1}−\boldsymbol{{cos}}\:{A}}{\mathrm{1}+\boldsymbol{{cos}}\:{A}}} \\ $$$$\:\:\:\:\:\:=\:\frac{\left({b}+{c}−{a}\right)}{\left(\frac{\mathrm{2}{bc}+{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)}\sqrt{\frac{\mathrm{2}{bc}−{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }{\mathrm{2}{bc}+{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$$$\boldsymbol{{r}}\:=\:\frac{\mathrm{2}\boldsymbol{{bc}}}{\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)}\sqrt{\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{c}}\right)\left(\boldsymbol{{a}}+\boldsymbol{{c}}−\boldsymbol{{b}}\right)}{\left(\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{a}}\right)\left(\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}\right)}}\:. \\ $$

Commented by mr W last updated on 15/Jan/19

����������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com