Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52900 by MJS last updated on 15/Jan/19

∫_0 ^(π/2) sin x (√(sin 2x)) dx=?  ∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx=?

π20sinxsin2xdx=?π4π4cosxcos2xdx=?

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

I=∫_0 ^(π/2) sinx(√(sin2x)) dx  I=∫_0 ^(π/2) cosx(√(sin2x)) dx  [∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx]  2I=∫_0 ^(π/2) (cosx+sinx)(√(sin2x)) dx  =∫_0 ^(π/2) d(sinx−cosx)(√(1−(1−sin2x))) dx  ∫_0 ^(π/2) d(sinx−cosx)(√(1−(sinx−cosx)^2 )) dx  ∣(((sinx−cosx)(√(1−(sinx−cosx)^2 )))/2)+(1/2)sin^(−1) (((sinx−cosx)/1))∣_0 ^(π/2)   =[{(((1−0)(√(1−(1−0)^2 )))/2)+(1/2)sin^(−1) (((1−0)/1))}−{((0−1(√(1−1)))/2)+(1/2)sin^(−1) (((0−1)/1))}]  =(1/2)×(π/2)−{(1/2)×(((−π)/2))}  =(π/4)+(π/4)=(π/2)  so I=(1/2)×(π/2)=(π/4)  sir pls check...

I=0π2sinxsin2xdxI=0π2cosxsin2xdx[0af(x)dx=0af(ax)dx]2I=0π2(cosx+sinx)sin2xdx=0π2d(sinxcosx)1(1sin2x)dx0π2d(sinxcosx)1(sinxcosx)2dx(sinxcosx)1(sinxcosx)22+12sin1(sinxcosx1)0π2=[{(10)1(10)22+12sin1(101)}{01112+12sin1(011)}]=12×π2{12×(π2)}=π4+π4=π2soI=12×π2=π4sirplscheck...

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

∫_(−(π/4)) ^(π/4)  cosx(√(cos2x)) dx    ∫_(−a) ^a f(x)dx=2×∫_0 ^a f(x)dx [here f(x)=evenfunction]  so∫_((−π)/4) ^(π/4)  cosx(√(cos2x)) dx=2×∫_0 ^(π/4) cosx(√(cos2x)) dx  now using help of graph...

π4π4cosxcos2xdxaaf(x)dx=2×0af(x)dx[heref(x)=evenfunction]soπ4π4cosxcos2xdx=2×0π4cosxcos2xdxnowusinghelpofgraph...

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

so ∫_((−π)/4) ^(π/4)  cosx(√(cos2x)) dx=area under the curve                                               ≈(2/3)×(π/2)×1=(π/3)  roughly it is a parabola sir...so area  (2/3)ab

soπ4π4cosxcos2xdx=areaunderthecurve23×π2×1=π3roughlyitisaparabolasir...soarea23ab

Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

Answered by mr W last updated on 16/Jan/19

∫_(−(π/4)) ^(π/4) cos x (√(cos 2x)) dx  =2∫_0 ^(π/4) cos x (√(cos 2x)) dx  =2∫_0 ^(π/4) cos x(√(1−2 sin^2  x)) dx  =(√2)∫_0 ^(π/4) (√(1−((√2) sin x)^2 )) d((√2) sin x)        (∫(√(1−t^2 )) dt)  =((√2)/2)[sin^(−1) ((√2) sin x)+((√2) sin x)(√(1−((√2) sin x)^2 ))]_0 ^(π/4)   =((√2)/2)((π/2))  =((π(√2))/4)

π4π4cosxcos2xdx=2π40cosxcos2xdx=2π40cosx12sin2xdx=2π401(2sinx)2d(2sinx)(1t2dt)=22[sin1(2sinx)+(2sinx)1(2sinx)2]0π4=22(π2)=π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com