Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 52948 by gunawan last updated on 15/Jan/19

If   f(x) =∫_( 1) ^x  ((log t)/(1+t)) dt, then   f(x)+f ((1/x) )=(1/2)(log x)^2

$$\mathrm{If}\:\:\:{f}\left({x}\right)\:=\underset{\:\mathrm{1}} {\overset{{x}} {\int}}\:\frac{\mathrm{log}\:{t}}{\mathrm{1}+{t}}\:{dt},\:\mathrm{then} \\ $$$$\:{f}\left({x}\right)+{f}\:\left(\frac{\mathrm{1}}{{x}}\:\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\:{x}\right)^{\mathrm{2}} \\ $$

Commented by maxmathsup by imad last updated on 15/Jan/19

let ϕ(x)=f(x)+f((1/x))   ⇒ϕ^′ (x)=f^′ (x)−(1/x^2 )f^′ ((1/x))  =((logx)/(1+x)) −(1/x^2 ) ((log((1/x)))/(1+(1/x))) =((logx)/(1+x)) +((logx)/(x^2  +x)) =((xlogx +logx)/(x^2  +x)) =(((x+1)logx)/(x(x+1))) =((logx)/x)  from another side we have (d/dx)((1/2)(logx)^2 )=(1/2) ((2logx)/x) =((logx)/x) ⇒  ϕ(x)=(1/2)(logx)^2  +c    but ϕ(1)=0=c  ⇒ϕ(x)=(1/2)(logx)^2  ⇒  f(x)+f((1/x))=(1/2)(logx)^2  .

$${let}\:\varphi\left({x}\right)={f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)\:\:\:\Rightarrow\varphi^{'} \left({x}\right)={f}^{'} \left({x}\right)−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{f}^{'} \left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$=\frac{{logx}}{\mathrm{1}+{x}}\:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\frac{{log}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+\frac{\mathrm{1}}{{x}}}\:=\frac{{logx}}{\mathrm{1}+{x}}\:+\frac{{logx}}{{x}^{\mathrm{2}} \:+{x}}\:=\frac{{xlogx}\:+{logx}}{{x}^{\mathrm{2}} \:+{x}}\:=\frac{\left({x}+\mathrm{1}\right){logx}}{{x}\left({x}+\mathrm{1}\right)}\:=\frac{{logx}}{{x}} \\ $$$${from}\:{another}\:{side}\:{we}\:{have}\:\frac{{d}}{{dx}}\left(\frac{\mathrm{1}}{\mathrm{2}}\left({logx}\right)^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{2}{logx}}{{x}}\:=\frac{{logx}}{{x}}\:\Rightarrow \\ $$$$\varphi\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({logx}\right)^{\mathrm{2}} \:+{c}\:\:\:\:{but}\:\varphi\left(\mathrm{1}\right)=\mathrm{0}={c}\:\:\Rightarrow\varphi\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({logx}\right)^{\mathrm{2}} \:\Rightarrow \\ $$$${f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({logx}\right)^{\mathrm{2}} \:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

f(x)=∫_1 ^x ((lnt)/(1+t))dt  f((1/x))=∫_1 ^(1/x) ((lnt)/(1+t))dt  k=(1/t)  t=(1/k)   dt=−(1/k^2 )dk  ∫_1 ^x ((ln((1/k)))/(1+(1/k)))×((−dk)/k^2 )  ∫_1 ^x ((−lnk)/(1+k))×(k/(−k^2 ))dk  f((1/x))=∫_1 ^x ((lnk)/(1+k))×(dk/k)  f(x)+f((1/x))=∫_1 ^x ((lnt)/(1+t))+((lnt)/(1+t))×(dt/t)  =∫_1 ^x ((lnt)/(1+t))×(1+(1/t))dt  =∫_1 ^x ((lnt)/t)  =∣(((lnt)^2 )/2)∣_1 ^x   =(((lnx)^2 )/2)  answer  pls see below...  I=∫((lnt)/t)dt  =lnt×lnt−∫(1/t)×lntdt  2I=(lnt)^2     so I=(((lnt)^2 )/2)

$${f}\left({x}\right)=\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}{dt} \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)=\int_{\mathrm{1}} ^{\frac{\mathrm{1}}{{x}}} \frac{{lnt}}{\mathrm{1}+{t}}{dt} \\ $$$${k}=\frac{\mathrm{1}}{{t}}\:\:{t}=\frac{\mathrm{1}}{{k}}\:\:\:{dt}=−\frac{\mathrm{1}}{{k}^{\mathrm{2}} }{dk} \\ $$$$\int_{\mathrm{1}} ^{{x}} \frac{{ln}\left(\frac{\mathrm{1}}{{k}}\right)}{\mathrm{1}+\frac{\mathrm{1}}{{k}}}×\frac{−{dk}}{{k}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{1}} ^{{x}} \frac{−{lnk}}{\mathrm{1}+{k}}×\frac{{k}}{−{k}^{\mathrm{2}} }{dk} \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)=\int_{\mathrm{1}} ^{{x}} \frac{{lnk}}{\mathrm{1}+{k}}×\frac{{dk}}{{k}} \\ $$$${f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)=\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}+\frac{{lnt}}{\mathrm{1}+{t}}×\frac{{dt}}{{t}} \\ $$$$=\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{\mathrm{1}+{t}}×\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){dt} \\ $$$$=\int_{\mathrm{1}} ^{{x}} \frac{{lnt}}{{t}} \\ $$$$=\mid\frac{\left({lnt}\right)^{\mathrm{2}} }{\mathrm{2}}\mid_{\mathrm{1}} ^{{x}} \\ $$$$=\frac{\left({lnx}\right)^{\mathrm{2}} }{\mathrm{2}}\:\:{answer} \\ $$$${pls}\:{see}\:{below}... \\ $$$${I}=\int\frac{{lnt}}{{t}}{dt} \\ $$$$={lnt}×{lnt}−\int\frac{\mathrm{1}}{{t}}×{lntdt} \\ $$$$\mathrm{2}{I}=\left({lnt}\right)^{\mathrm{2}} \:\:\:\:{so}\:{I}=\frac{\left({lnt}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$

Commented by gunawan last updated on 16/Jan/19

thank you very much Sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Jan/19

most welcome...

$${most}\:{welcome}... \\ $$

Answered by Tinkutara last updated on 15/Jan/19

Commented by Tinkutara last updated on 15/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com