Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53066 by ajfour last updated on 16/Jan/19

Commented by ajfour last updated on 17/Jan/19

Determine radius R of larger circle  in terms of a,b,c .

$${Determine}\:{radius}\:{R}\:{of}\:{larger}\:{circle} \\ $$$${in}\:{terms}\:{of}\:{a},{b},{c}\:.\:\:\:\: \\ $$

Commented by ajfour last updated on 17/Jan/19

Sir ..≡≫^(please try this even!)

$${Sir}\:..\overset{{please}\:{try}\:{this}\:{even}!} {\equiv\gg} \\ $$

Commented by MJS last updated on 17/Jan/19

...I′m busy trying...

$$...\mathrm{I}'\mathrm{m}\:\mathrm{busy}\:\mathrm{trying}... \\ $$

Commented by ajfour last updated on 18/Jan/19

Commented by ajfour last updated on 18/Jan/19

R=(δ/(8(b+c−a)))+((a^2 (b+c−a))/(2δ))  δ=(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  please check it now Sir.

$${R}=\frac{\delta}{\mathrm{8}\left({b}+{c}−{a}\right)}+\frac{{a}^{\mathrm{2}} \left({b}+{c}−{a}\right)}{\mathrm{2}\delta} \\ $$$$\delta=\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)} \\ $$$${please}\:{check}\:{it}\:{now}\:{Sir}. \\ $$

Commented by ajfour last updated on 18/Jan/19

BK = R, BM=(a/2)  ⇒ MK=(√(R^2 −(a^2 /4)))    JN = r−(√(R^2 −(a^2 /4)))  ,  KN = R−r  Now  r(cot θ+cot φ)=a               r(cot θ+cot ψ)=c               r(cot φ+cot ψ)=b  ⇒  2rcot θ = a+c−b            rcot θ = ((c−b)/2)+(a/2)  BP = rcot θ  JK = MP = BP−(a/2)           JK = rcot θ−(a/2) = ((c−b)/2)  In △JKN                 KN^( 2) =JK^( 2) +JN^( 2)   ⇒  (R−r)^2 =(((c−b)/2))^2 +(r−(√(R^2 −(a^2 /4))))^2   ⇒ R^2 −2rR+r^2 =(((c−b)/2))^2 +r^2 +R^2 −(a^2 /4)                                           −2r(√(R^2 −(a^2 /4)))  ⇒ 2r(R−(√(R^2 −(a^2 /4))))=(((a+c−b)(a+b−c))/4)  let area(△ABC)=△  we know  r(a+b+c)= 2△   , and    △= (√(s(s−a)(s−b)(s−c)))  If  δ=(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  ⇒ 4△= δ = 2r(a+b+c)  ⇒  r = (𝛅/(2(a+b+c)))   2r(R−(√(R^2 −(a^2 /4))))=(((a+c−b)(a+b−c))/4)  gives   2r(R−(√(R^2 −(a^2 /4))) ) = (δ^2 /(4(a+b+c)(b+c−a)))  ⇒ R−(√(R^2 −(a^2 /4))) = (δ/(4(b+c−a)))  ⇒ R^2 −(a^2 /4)=[R−(δ/(4(b+c−a)))]^2   ⇒  ((Rδ)/(2(b+c−a)))=(a^2 /4)+(δ^2 /(16(b+c−a)^2 ))  ⇒ R=((a^2 (b+c−a))/(2δ))+(δ/(8(b+c−a))) .

$${BK}\:=\:{R},\:{BM}=\frac{{a}}{\mathrm{2}} \\ $$$$\Rightarrow\:{MK}=\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\:\:{JN}\:=\:{r}−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:\:,\:\:{KN}\:=\:{R}−{r} \\ $$$${Now}\:\:{r}\left(\mathrm{cot}\:\theta+\mathrm{cot}\:\phi\right)={a} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{r}\left(\mathrm{cot}\:\theta+\mathrm{cot}\:\psi\right)={c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{r}\left(\mathrm{cot}\:\phi+\mathrm{cot}\:\psi\right)={b} \\ $$$$\Rightarrow\:\:\mathrm{2}{r}\mathrm{cot}\:\theta\:=\:{a}+{c}−{b} \\ $$$$\:\:\:\:\:\:\:\:\:\:{r}\mathrm{cot}\:\theta\:=\:\frac{{c}−{b}}{\mathrm{2}}+\frac{{a}}{\mathrm{2}} \\ $$$${BP}\:=\:{r}\mathrm{cot}\:\theta \\ $$$${JK}\:=\:{MP}\:=\:{BP}−\frac{{a}}{\mathrm{2}}\: \\ $$$$\:\:\:\:\:\:\:\:{JK}\:=\:{r}\mathrm{cot}\:\theta−\frac{{a}}{\mathrm{2}}\:=\:\frac{{c}−{b}}{\mathrm{2}} \\ $$$${In}\:\bigtriangleup{JKN}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{KN}^{\:\mathrm{2}} ={JK}^{\:\mathrm{2}} +{JN}^{\:\mathrm{2}} \\ $$$$\Rightarrow\:\:\left({R}−{r}\right)^{\mathrm{2}} =\left(\frac{{c}−{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({r}−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{R}^{\mathrm{2}} −\mathrm{2}{rR}+{r}^{\mathrm{2}} =\left(\frac{{c}−{b}}{\mathrm{2}}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} +{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}{r}\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\Rightarrow\:\mathrm{2}{r}\left({R}−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)=\frac{\left({a}+{c}−{b}\right)\left({a}+{b}−{c}\right)}{\mathrm{4}} \\ $$$${let}\:{area}\left(\bigtriangleup{ABC}\right)=\bigtriangleup \\ $$$${we}\:{know}\:\:{r}\left({a}+{b}+{c}\right)=\:\mathrm{2}\bigtriangleup\:\:\:,\:{and} \\ $$$$\:\:\bigtriangleup=\:\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)} \\ $$$${If}\:\:\delta=\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)} \\ $$$$\Rightarrow\:\mathrm{4}\bigtriangleup=\:\delta\:=\:\mathrm{2}{r}\left({a}+{b}+{c}\right) \\ $$$$\Rightarrow\:\:\boldsymbol{{r}}\:=\:\frac{\boldsymbol{\delta}}{\mathrm{2}\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)} \\ $$$$\:\mathrm{2}{r}\left({R}−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)=\frac{\left({a}+{c}−{b}\right)\left({a}+{b}−{c}\right)}{\mathrm{4}} \\ $$$${gives} \\ $$$$\:\mathrm{2}{r}\left({R}−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:\right)\:=\:\frac{\delta^{\mathrm{2}} }{\mathrm{4}\left({a}+{b}+{c}\right)\left({b}+{c}−{a}\right)} \\ $$$$\Rightarrow\:{R}−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:=\:\frac{\delta}{\mathrm{4}\left({b}+{c}−{a}\right)} \\ $$$$\Rightarrow\:{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}=\left[{R}−\frac{\delta}{\mathrm{4}\left({b}+{c}−{a}\right)}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\frac{{R}\delta}{\mathrm{2}\left({b}+{c}−{a}\right)}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{\delta^{\mathrm{2}} }{\mathrm{16}\left({b}+{c}−{a}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{R}=\frac{{a}^{\mathrm{2}} \left({b}+{c}−{a}\right)}{\mathrm{2}\delta}+\frac{\delta}{\mathrm{8}\left({b}+{c}−{a}\right)}\:. \\ $$

Commented by MJS last updated on 18/Jan/19

now it′s the same as mine. how did you get it?

$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{mine}.\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{it}? \\ $$

Commented by MJS last updated on 18/Jan/19

great! now try the same for the excircles

$$\mathrm{great}!\:\mathrm{now}\:\mathrm{try}\:\mathrm{the}\:\mathrm{same}\:\mathrm{for}\:\mathrm{the}\:\mathrm{excircles} \\ $$

Commented by behi83417@gmail.com last updated on 19/Jan/19

R=((2a^2 (p−a))/(8S))+((4S)/(16(p−a)))=((a^2 +r_a ^2 )/(4r_a )).

$${R}=\frac{\mathrm{2}{a}^{\mathrm{2}} \left({p}−{a}\right)}{\mathrm{8}{S}}+\frac{\mathrm{4}{S}}{\mathrm{16}\left({p}−{a}\right)}=\frac{{a}^{\mathrm{2}} +{r}_{{a}} ^{\mathrm{2}} }{\mathrm{4}{r}_{{a}} }. \\ $$

Answered by MJS last updated on 18/Jan/19

coordinate method gives  δ=(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))  A= (((−(δ/(2a)))),(((c^2 −b^2 )/(2a))) )  B= ((0),((−(a/2))) )  C= ((0),((a/2)) )  incircle  center = (((−(δ/(2(a+b+c))))),(((c−b)/2)) )  radius = (δ/(2(a+b+c)))  big circle  center =  ((((5a^3 −b^3 −c^3 −3a^2 (b+c)−b^2 (a−c)−c^2 (a−b)+2abc)/(8δ))),(0) )  radius = −((3a^3 +b^3 +c^3 −5a^2 (b+c)+b^2 (a−c)+c^2 (a−b)−2abc)/(8δ))  I couldn′t simplify... but I plotted several  triangles with both circles and it seems to  hold...

$$\mathrm{coordinate}\:\mathrm{method}\:\mathrm{gives} \\ $$$$\delta=\sqrt{\left({a}+{b}+{c}\right)\left({a}+{b}−{c}\right)\left({a}−{b}+{c}\right)\left(−{a}+{b}+{c}\right)} \\ $$$${A}=\begin{pmatrix}{−\frac{\delta}{\mathrm{2}{a}}}\\{\frac{{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{a}}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{0}}\\{−\frac{{a}}{\mathrm{2}}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{\mathrm{0}}\\{\frac{{a}}{\mathrm{2}}}\end{pmatrix} \\ $$$$\mathrm{incircle} \\ $$$$\mathrm{center}\:=\begin{pmatrix}{−\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)}}\\{\frac{{c}−{b}}{\mathrm{2}}}\end{pmatrix} \\ $$$$\mathrm{radius}\:=\:\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)} \\ $$$$\mathrm{big}\:\mathrm{circle} \\ $$$$\mathrm{center}\:=\:\begin{pmatrix}{\frac{\mathrm{5}{a}^{\mathrm{3}} −{b}^{\mathrm{3}} −{c}^{\mathrm{3}} −\mathrm{3}{a}^{\mathrm{2}} \left({b}+{c}\right)−{b}^{\mathrm{2}} \left({a}−{c}\right)−{c}^{\mathrm{2}} \left({a}−{b}\right)+\mathrm{2}{abc}}{\mathrm{8}\delta}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{radius}\:=\:−\frac{\mathrm{3}{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} −\mathrm{5}{a}^{\mathrm{2}} \left({b}+{c}\right)+{b}^{\mathrm{2}} \left({a}−{c}\right)+{c}^{\mathrm{2}} \left({a}−{b}\right)−\mathrm{2}{abc}}{\mathrm{8}\delta} \\ $$$$\mathrm{I}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{simplify}...\:\mathrm{but}\:\mathrm{I}\:\mathrm{plotted}\:\mathrm{several} \\ $$$$\mathrm{triangles}\:\mathrm{with}\:\mathrm{both}\:\mathrm{circles}\:\mathrm{and}\:\mathrm{it}\:\mathrm{seems}\:\mathrm{to} \\ $$$$\mathrm{hold}... \\ $$

Commented by MJS last updated on 18/Jan/19

you′re welcome.  I like your way to solve it!

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}. \\ $$$$\mathrm{I}\:\mathrm{like}\:\mathrm{your}\:\mathrm{way}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}! \\ $$

Commented by ajfour last updated on 18/Jan/19

this i missed. thanks.

$${this}\:{i}\:{missed}.\:{thanks}. \\ $$

Commented by mr W last updated on 18/Jan/19

nice solution from you both!

$${nice}\:{solution}\:{from}\:{you}\:{both}! \\ $$

Commented by ajfour last updated on 18/Jan/19

thanks Sir.

$${thanks}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com