Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53071 by behi83417@gmail.com last updated on 16/Jan/19

Commented by behi83417@gmail.com last updated on 16/Jan/19

as shown in fig:  prove that:          → ((area of  outer  hexagon)/(area of  inner triangle))   ≥ 13

asshowninfig:provethat:areaofouterhexagonareaofinnertriangle13

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

area ABC triangle=S  S=(1/2)acsinB=(1/2)absinC=(1/2)bcsinA  others three triangle ...butterfly wings like..  are also S.  area of hexagon=4S+P+Q+R  now S+Q=(1/2)(b+c)(a+b)sinB  S+P=(1/2)(a+c)(a+b)sinA  S+R=(1/2)(b+c)(a+c)sinC  now we know  ((sinA)/a)=((sinB)/b)=((sinC)/c)=k(say)  so △ABC area=(1/2)acsinB=((abck)/2)  area hexagon=4S+P+Q+R  =(S+P)+(S+Q)+(S+R)+S  =(((a+c)(a+b)ka+(b+c)(a+b)kb+(b+c)(a+c)kc+abck)/2)  =(k/2)[(a^2 +ab+ac+bc)a+(ab+b^2 +ac+bc)b+(ab+bc+ac+c^2 )c+abc]  =(k/2)[a^3 +a^2 b+a^2 c+abc+ab^2 +b^3 +abc+b^2 c+abc+bc^2 +ac^2 +c^3 +abc]  =(k/2)[4abc+a^3 +b^3 +c^3 +a^2 (b+c)+b^2 (a+c)+c^2 (a+b)]  =2abck+(k/2)[a^2 (a+b+c)+b^2 (a+b+c)+c^2 (a+b+c)]    =2abck+(k/2)[(a+b+c)(a^2 +b^2 +c^2 )]  now ((a+b+c)/3)≥(abc)^(1/3)   ((a^2 +b^2 +c^2 )/3)≥(a^2 b^2 c^2 )^(1/3)   so(a+b+c)(a^2 +b^2 +c^2 )≥9abc  so area of hexagon  =2abck+(k/2)(a+b+c)(a^2 +b^2 +c^2 )≥2abck+((9abck)/2)  so area of hexagon≥((13abck)/2)  area of hexagon≥13×area of △ABC  ((area of hexagon)/(△ABC))≥13 proved

areaABCtriangle=SS=12acsinB=12absinC=12bcsinAothersthreetriangle...butterflywingslike..arealsoS.areaofhexagon=4S+P+Q+RnowS+Q=12(b+c)(a+b)sinBS+P=12(a+c)(a+b)sinAS+R=12(b+c)(a+c)sinCnowweknowsinAa=sinBb=sinCc=k(say)soABCarea=12acsinB=abck2areahexagon=4S+P+Q+R=(S+P)+(S+Q)+(S+R)+S=(a+c)(a+b)ka+(b+c)(a+b)kb+(b+c)(a+c)kc+abck2=k2[(a2+ab+ac+bc)a+(ab+b2+ac+bc)b+(ab+bc+ac+c2)c+abc]=k2[a3+a2b+a2c+abc+ab2+b3+abc+b2c+abc+bc2+ac2+c3+abc]=k2[4abc+a3+b3+c3+a2(b+c)+b2(a+c)+c2(a+b)]=2abck+k2[a2(a+b+c)+b2(a+b+c)+c2(a+b+c)]=2abck+k2[(a+b+c)(a2+b2+c2)]nowa+b+c3(abc)13a2+b2+c23(a2b2c2)13so(a+b+c)(a2+b2+c2)9abcsoareaofhexagon=2abck+k2(a+b+c)(a2+b2+c2)2abck+9abck2soareaofhexagon13abck2areaofhexagon13×areaofABCareaofhexagonABC13proved

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

sir pls check i have proved...

sirplscheckihaveproved...

Commented by behi83417@gmail.com last updated on 17/Jan/19

thank you very much sir tanmay.  it is a nice and smart work.

thankyouverymuchsirtanmay.itisaniceandsmartwork.

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

thank you sir...

thankyousir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com