Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53080 by Abdo msup. last updated on 17/Jan/19

calculate ∫_0 ^π   ((cos^2 x)/(2+3sin(2x)))dx

calculate0πcos2x2+3sin(2x)dx

Commented by maxmathsup by imad last updated on 17/Jan/19

let A =∫_0 ^π   ((cos^2 x)/(2+3sin(2x)))dx ⇒A=∫_0 ^π   ((1+cos(2x))/(2(2+3sin(2x))))dx  =_(2x=t)  ∫_0 ^(2π)   ((1+cos(t))/(2(2+3sin(t)))) (dt/2) =(1/4) ∫_0 ^(2π)    ((1+cos(t))/(2+3sin(t)))dt ⇒  4A =∫_0 ^(2π)    ((1+cost)/(2+3sint)) dt  = Re( ∫_0 ^(2π)   ((1+e^(it) )/(2+3sint))dt) let  changement e^(it) =z give  ∫_0 ^(2π)   ((1+e^(it) )/(2+3sint))dt =∫_(∣z∣=1)   ((1+z)/(2+3((z−z^(−1) )/(2i))))(dz/(iz)) = ∫_(∣z∣=1)    ((2i(1+z))/(iz(4i +3z−3z^(−1) )))dz  =∫_(∣z∣=1)    ((2(1+z))/(4iz +3z^2  −3))dz  let consider the complex function   ϕ(z)=((2(1+z))/(3z^2  +4iz −3))  poles of ϕ?  let find roots of 3z^2  +4iz −3  Δ^′ =(2i)^2 −3(−3) =−4+9 =5 ⇒z_1 =((−2i+(√5))/3)  and z_2 =((−2i−(√5))/3)(are poles of ϕ)  ∣z_1 ∣−1 =(1/3)(√(4+5))=3 >0 ⇒z_1  is out of circle ⇒Res(ϕ,z_1 )=0  ∣z_2 ∣−1 =(1/3)(√(4+5))=3>0 ⇒z_2 is out of circle ⇒Res(ϕ,z_2 )=0   ∫_(∣z∣=1) ϕ(z)dz =2iπ{ Res(ϕ,z_1 ) +Res(ϕ,z_2 )}=0 ⇒Re(∫ ϕ(zdz)=0 ⇒  A =0 .

letA=0πcos2x2+3sin(2x)dxA=0π1+cos(2x)2(2+3sin(2x))dx=2x=t02π1+cos(t)2(2+3sin(t))dt2=1402π1+cos(t)2+3sin(t)dt4A=02π1+cost2+3sintdt=Re(02π1+eit2+3sintdt)letchangementeit=zgive02π1+eit2+3sintdt=z∣=11+z2+3zz12idziz=z∣=12i(1+z)iz(4i+3z3z1)dz=z∣=12(1+z)4iz+3z23dzletconsiderthecomplexfunctionφ(z)=2(1+z)3z2+4iz3polesofφ?letfindrootsof3z2+4iz3Δ=(2i)23(3)=4+9=5z1=2i+53andz2=2i53(arepolesofφ)z11=134+5=3>0z1isoutofcircleRes(φ,z1)=0z21=134+5=3>0z2isoutofcircleRes(φ,z2)=0z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}=0Re(φ(zdz)=0A=0.

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

∫(((1+cos2x)/2)/(2+3sin2x))dx  (1/2)∫((1+cos2x)/(2+3sin2x))dx  (1/2)∫(dx/(2+3(((2tanx)/(1+tan^2 x)))))+(1/(12))∫((d(2+3sin2x))/(2+3sin2x))  (1/2)∫((sec^2 xdx)/(2+2tan^2 x+6tanx))+(1/(12))ln(2+3sin2x)+c  (1/4)∫((d(tanx))/(tan^2 x+3tanx+1))+do  (1/4)∫((d(tanx))/(tan^2 x+2tanx×(3/2)+(9/4)+1−(9/4)))+do  (1/4)∫((d(tanx))/((tanx+(3/2))^2 −((√(5/4)) )^2 ))+do  (1/4)∫((d(tanx+(3/2)))/((tanx+(3/2))^2 −((√(5/4)) )^2 ))+do  (1/4)×(1/(2(((√5)/2))))ln(((tanx+(3/2)−((√5)/2))/(tanx+(3/2)+((√5)/2))))+(1/(12))ln(2+3sin2x)+c  now we have to put limit..  (1/(4(√5)))∣ln(((tanx+(3/2)−((√5)/2))/(tanx+(3/2)+((√5)/2))))+(1/(12))ln(2+3sin2x)∣_0 ^π   answer is zero...

1+cos2x22+3sin2xdx121+cos2x2+3sin2xdx12dx2+3(2tanx1+tan2x)+112d(2+3sin2x)2+3sin2x12sec2xdx2+2tan2x+6tanx+112ln(2+3sin2x)+c14d(tanx)tan2x+3tanx+1+do14d(tanx)tan2x+2tanx×32+94+194+do14d(tanx)(tanx+32)2(54)2+do14d(tanx+32)(tanx+32)2(54)2+do14×12(52)ln(tanx+3252tanx+32+52)+112ln(2+3sin2x)+cnowwehavetoputlimit..145ln(tanx+3252tanx+32+52)+112ln(2+3sin2x)0πansweriszero...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com