All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53080 by Abdo msup. last updated on 17/Jan/19
calculate∫0πcos2x2+3sin(2x)dx
Commented by maxmathsup by imad last updated on 17/Jan/19
letA=∫0πcos2x2+3sin(2x)dx⇒A=∫0π1+cos(2x)2(2+3sin(2x))dx=2x=t∫02π1+cos(t)2(2+3sin(t))dt2=14∫02π1+cos(t)2+3sin(t)dt⇒4A=∫02π1+cost2+3sintdt=Re(∫02π1+eit2+3sintdt)letchangementeit=zgive∫02π1+eit2+3sintdt=∫∣z∣=11+z2+3z−z−12idziz=∫∣z∣=12i(1+z)iz(4i+3z−3z−1)dz=∫∣z∣=12(1+z)4iz+3z2−3dzletconsiderthecomplexfunctionφ(z)=2(1+z)3z2+4iz−3polesofφ?letfindrootsof3z2+4iz−3Δ′=(2i)2−3(−3)=−4+9=5⇒z1=−2i+53andz2=−2i−53(arepolesofφ)∣z1∣−1=134+5=3>0⇒z1isoutofcircle⇒Res(φ,z1)=0∣z2∣−1=134+5=3>0⇒z2isoutofcircle⇒Res(φ,z2)=0∫∣z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}=0⇒Re(∫φ(zdz)=0⇒A=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19
∫1+cos2x22+3sin2xdx12∫1+cos2x2+3sin2xdx12∫dx2+3(2tanx1+tan2x)+112∫d(2+3sin2x)2+3sin2x12∫sec2xdx2+2tan2x+6tanx+112ln(2+3sin2x)+c14∫d(tanx)tan2x+3tanx+1+do14∫d(tanx)tan2x+2tanx×32+94+1−94+do14∫d(tanx)(tanx+32)2−(54)2+do14∫d(tanx+32)(tanx+32)2−(54)2+do14×12(52)ln(tanx+32−52tanx+32+52)+112ln(2+3sin2x)+cnowwehavetoputlimit..145∣ln(tanx+32−52tanx+32+52)+112ln(2+3sin2x)∣0πansweriszero...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com