Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53113 by maxmathsup by imad last updated on 17/Jan/19

let I =∫_(−∞) ^(+∞)    ((t+1)/((t^2 −t+1)^2 ))dt  find value of I .

letI=+t+1(t2t+1)2dtfindvalueofI.

Commented by maxmathsup by imad last updated on 18/Jan/19

we have t^2 −t+1 =(t−(1/2))^2 +(3/4)  so changement t−(1/2) =((√3)/2) x give  I =∫_(−∞) ^(+∞)   (((1/2)+((√3)/2)x +1)/(((3/4))^2 (x^2  +1)^2 )) ((√3)/2) dx =((16)/9) ((√3)/4) ∫_(−∞) ^(+∞)    ((3+(√3)x)/((x^2  +1)^2 ))dx  =((4(√3))/9) ∫_(−∞) ^(+∞)   ((3+(√3)x)/((x^2  +1)^2 ))dx  let ϕ(z) =((3 +(√3)z)/((z^2  +1)^2 ))  we have   ϕ(z) =((3+(√3)z)/((z−i)^2 (z+i)^2 ))  so the ples of ϕ are +^− i(doubles) and residus theorem  give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)  (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1)) =lim_(z→i) { ((3+(√3)z)/((z+i)^2 ))}^((1))   =lim_(z→i) (((√3)(z+i)^2 −2(z+i)(3+(√3)z))/((z+i)^4 ))  =lim_(z→i)    (((√3)(z+i)−2(3+(√3)z))/((z+i)^3 )) =((2(√3)i−2(3+(√3)i))/(−8i)) =((−6)/(−8i)) =(3/(4i)) ⇒  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (3/(4i)) =((3π)/2) ⇒ I =((4(√3))/9) ((3π)/2) =((2π(√3))/3) .

wehavet2t+1=(t12)2+34sochangementt12=32xgiveI=+12+32x+1(34)2(x2+1)232dx=16934+3+3x(x2+1)2dx=439+3+3x(x2+1)2dxletφ(z)=3+3z(z2+1)2wehaveφ(z)=3+3z(zi)2(z+i)2sotheplesofφare+i(doubles)andresidustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{3+3z(z+i)2}(1)=limzi3(z+i)22(z+i)(3+3z)(z+i)4=limzi3(z+i)2(3+3z)(z+i)3=23i2(3+3i)8i=68i=34i+φ(z)dz=2iπ34i=3π2I=4393π2=2π33.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com