All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53113 by maxmathsup by imad last updated on 17/Jan/19
letI=∫−∞+∞t+1(t2−t+1)2dtfindvalueofI.
Commented by maxmathsup by imad last updated on 18/Jan/19
wehavet2−t+1=(t−12)2+34sochangementt−12=32xgiveI=∫−∞+∞12+32x+1(34)2(x2+1)232dx=16934∫−∞+∞3+3x(x2+1)2dx=439∫−∞+∞3+3x(x2+1)2dxletφ(z)=3+3z(z2+1)2wehaveφ(z)=3+3z(z−i)2(z+i)2sotheplesofφare+−i(doubles)andresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{3+3z(z+i)2}(1)=limz→i3(z+i)2−2(z+i)(3+3z)(z+i)4=limz→i3(z+i)−2(3+3z)(z+i)3=23i−2(3+3i)−8i=−6−8i=34i⇒∫−∞+∞φ(z)dz=2iπ34i=3π2⇒I=4393π2=2π33.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com