Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53114 by maxmathsup by imad last updated on 17/Jan/19

let A_n =∫_0 ^∞     ((x sin(nx))/((x^2  +n^2 )^2 ))dx  with n integr natural not 0  1) find the value of  A_n   2) study the convergence of Σ A_n

letAn=0xsin(nx)(x2+n2)2dxwithnintegrnaturalnot01)findthevalueofAn2)studytheconvergenceofΣAn

Commented by maxmathsup by imad last updated on 18/Jan/19

1) changement x=nt give A_n =∫_0 ^∞    ((nt sin(n^2 t))/(n^4 (t^2  +1)^2 )) ndt =(1/n^2 )∫_0 ^∞   ((tsin(n^2 t))/((t^2  +1)^2 ))dt ⇒  2n^2  A_n =∫_(−∞) ^(+∞)    ((tsin(n^2 t))/((t^2  +1)^2 ))dt =Im( ∫_(−∞) ^(+∞)    ((t e^(in^2 t) )/((t^2  +1)^2 ))dt) let consider the complex  function ϕ(z) =((z e^(in^2 z) )/((z^2 +1)^2 )) ⇒ϕ(z)=((z e^(in^2 z) )/((z−i)^2 (z+i)^2 )) so the poles of ϕ are i and −i  (doubles) residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz =2iπRes(ϕ,i)  Res(ϕ,i) =lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i) { ((z e^(in^2 z) )/((z+i)^2 ))}^((1)) =lim_(z→i)   (((e^(in^2 z)  +in^2 z e^(in^2 z) )(z+i)^2 −2(z+i)z e^(in^2 z) )/((z+i)^4 ))  =lim_(z→i)    ((((1+in^2 z)(z+i)−2z)e^(in^2 z) )/((z+i)^3 )) =((((1−n^2 )(2i)−2i)e^(−n^2 ) )/((2i)^3 ))  =((−2in^2  e^(−n^2 ) )/(−8i)) =(n^2 /4) e^(−n^2  )  ⇒ ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (n^2 /4) e^(−n^2 ) =((iπn^2 )/2) e^(−n^2 )   2n^2  A_n =((πn^2 )/2) e^(−n^2 )  ⇒ A_n =(π/4) e^(−n^2 )  .  we have Σ_(n=0) ^∞  A_n =(π/4) Σ_(n=0) ^∞  e^(−n^2 )    but  n^2 ≥n ⇒−n^2 ≤−n ⇒e^(−n^2 ) ≤e^(−n)  ⇒  Σ_(n=0) ^∞  A_n ≤(π/4) Σ_(n=0) ^∞  ((1/e))^n  =(π/4)(1/(1−(1/e))) =(π/4) (e/(e−1)) ⇒  0< Σ_(n=0) ^∞  A_n  ≤((πe)/(4(e−1))) .

1)changementx=ntgiveAn=0ntsin(n2t)n4(t2+1)2ndt=1n20tsin(n2t)(t2+1)2dt2n2An=+tsin(n2t)(t2+1)2dt=Im(+tein2t(t2+1)2dt)letconsiderthecomplexfunctionφ(z)=zein2z(z2+1)2φ(z)=zein2z(zi)2(z+i)2sothepolesofφareiandi(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{zein2z(z+i)2}(1)=limzi(ein2z+in2zein2z)(z+i)22(z+i)zein2z(z+i)4=limzi((1+in2z)(z+i)2z)ein2z(z+i)3=((1n2)(2i)2i)en2(2i)3=2in2en28i=n24en2+φ(z)dz=2iπn24en2=iπn22en22n2An=πn22en2An=π4en2.wehaven=0An=π4n=0en2butn2nn2nen2enn=0Anπ4n=0(1e)n=π4111e=π4ee10<n=0Anπe4(e1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com