All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53114 by maxmathsup by imad last updated on 17/Jan/19
letAn=∫0∞xsin(nx)(x2+n2)2dxwithnintegrnaturalnot01)findthevalueofAn2)studytheconvergenceofΣAn
Commented by maxmathsup by imad last updated on 18/Jan/19
1)changementx=ntgiveAn=∫0∞ntsin(n2t)n4(t2+1)2ndt=1n2∫0∞tsin(n2t)(t2+1)2dt⇒2n2An=∫−∞+∞tsin(n2t)(t2+1)2dt=Im(∫−∞+∞tein2t(t2+1)2dt)letconsiderthecomplexfunctionφ(z)=zein2z(z2+1)2⇒φ(z)=zein2z(z−i)2(z+i)2sothepolesofφareiand−i(doubles)residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{zein2z(z+i)2}(1)=limz→i(ein2z+in2zein2z)(z+i)2−2(z+i)zein2z(z+i)4=limz→i((1+in2z)(z+i)−2z)ein2z(z+i)3=((1−n2)(2i)−2i)e−n2(2i)3=−2in2e−n2−8i=n24e−n2⇒∫−∞+∞φ(z)dz=2iπn24e−n2=iπn22e−n22n2An=πn22e−n2⇒An=π4e−n2.wehave∑n=0∞An=π4∑n=0∞e−n2butn2⩾n⇒−n2⩽−n⇒e−n2⩽e−n⇒∑n=0∞An⩽π4∑n=0∞(1e)n=π411−1e=π4ee−1⇒0<∑n=0∞An⩽πe4(e−1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com