Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53119 by rahul 19 last updated on 18/Jan/19

Evaluate :  1) ∫(√((2−x)/(4+x))) dx  2) ∫ (√((x−2)/(x−4))) dx  3) ∫ (√((x−2)(x−4))) dx  4) ∫ (dx/(2sinx+3secx)) .

Evaluate:1)2x4+xdx2)x2x4dx3)(x2)(x4)dx4)dx2sinx+3secx.

Commented by maxmathsup by imad last updated on 18/Jan/19

3) let I =∫(√((x−2)(x−4)))dx changement (√(x−2))=t give x−2=t^2  ⇒x=2+t^2   I =∫ t(√(2+t^2 −4))2tdt =2 ∫ t^2 (√(t^2 −2))dt =_(t=(√2)ch(u))    2 ∫ 2ch^2 t (√2)sh(u)(√2)sh(u) du  =8 ∫  ch^2 u sh^2 u du =8 ∫   (((2shu chu)^2 )/4) du =2 ∫ sh^2 u du  =2 ∫ ((ch(2u)−1)/2) du =∫ ch(2u)du −u +c  =(1/2)sh(2u) −u +c  but u=argch((t/(√2))) =ln((t/(√2)) +(√((t^2 /2)−1))) ⇒  sh(2u) =((e^(2u) −e^(−2u) )/2) =(1/2){((t/(√2)) +(√((t^2 /2)−1)))^2 −((t/(√2)) +(√((t^2 /2)−1)))^(−2) } ⇒  I =(1/4){ (((√(x−2))/(√2)) +(√(((x−2)/2)−1)))^2 −(((√(x−2))/(√2))+(√(((x−2)/2)−1)))^(−2)  −ln(((√(x−2))/(√2)) +(√(((x−2)/2)−1))) +c  =(1/4){ (1/2)((√(x−2))+(√(x−4)))^2  −(2/(((√(x−2))+(√(x−4)))^2 ))}−ln((((√(x−2))+(√(x−4)))/(√2))) +c

3)letI=(x2)(x4)dxchangementx2=tgivex2=t2x=2+t2I=t2+t242tdt=2t2t22dt=t=2ch(u)22ch2t2sh(u)2sh(u)du=8ch2ush2udu=8(2shuchu)24du=2sh2udu=2ch(2u)12du=ch(2u)duu+c=12sh(2u)u+cbutu=argch(t2)=ln(t2+t221)sh(2u)=e2ue2u2=12{(t2+t221)2(t2+t221)2}I=14{(x22+x221)2(x22+x221)2ln(x22+x221)+c=14{12(x2+x4)22(x2+x4)2}ln(x2+x42)+c

Commented by Tawa1 last updated on 18/Jan/19

Sir please check your solution to my question  52841.  i asked for some clarification sir.  Thanks sir

Sirpleasecheckyoursolutiontomyquestion52841.iaskedforsomeclarificationsir.Thankssir

Commented by maxmathsup by imad last updated on 23/Jan/19

2) let I =∫(√((x−2)/(x−4)))dx   changement (√((x−2)/(x−4)))=t give ((x−2)/(x−4)) =t^2  ⇒  x−2 =t^2 x−4t^2  ⇒(1−t^2 )x =2−4t^2  ⇒x =((−4t^2  +2)/(1−t^2 )) =((4t^2 −2)/(t^2 −1)) ⇒  (dx/dt)=((8t(t^2 −1)−(4t^2 −2)2t)/((t^2 −1)^2 )) =((8t^3 −8t −8t^3  +4t)/((t^2 −1)^2 )) =((−4t)/((t^2 −1)^2 )) ⇒  I = ∫  t(((−4t)/((t^2 −1)^2 )))dt =−4 ∫  (t^2 /((t^2  −1)^2 ))dt  =−4∫((t^2 −1 +1)/((t^2 −1)^2 ))dt =−4 ∫   (dt/(t^2 −1)) −4 ∫   (dt/((t^2  −1)^2 )) but  ∫  (dt/(t^2  −1)) =(1/2)∫ ((1/(t−1)) −(1/(t+1)))dt =(1/2)ln∣((t−1)/(t+1))∣ +c_1   let decompose F(t)=(1/((t^2 −1)^2 )) ⇒F(t)=(1/((t−1)^2 (t+1)^2 ))  =(a/(t−1)) +(b/((t−1)^2 )) +(c/((t+1))) +(d/((t+1)^2 ))  b =lim_(t→1) (t−1)^2  F(t) =(1/4)  d =lim_(t→−1) (t+1)^2  F(t) =(1/4) ⇒F(t)=(a/(t−1)) +(1/(4(t−1)^2 )) +(c/(t+1)) +(1/(4(t+1)^2 ))  F(−t)=F(t) ⇒((−a)/(t+1)) +(1/(4(t+1)^2 )) + ((−c)/(t−1)) +(1/(4(t−1)^2 )) =F(t) ⇒c=−a ⇒  F(t) =(a/(t−1)) +(1/(4(t−1)^2 )) −(a/(t+1)) +(1/(4(t+1)^2 ))  F(0)=1 =−a +(1/4) −a +(1/4) ⇒−2a+(1/2) =1 ⇒−2a =(1/2) ⇒a =−(1/4) ⇒  F(x)=−(1/(4(t−1))) +(1/(4(t+1))) +(1/(4(t−1)^2 )) +(1/(4(t+1)^2 )) ⇒  ∫ (dt/((t^2 −1)^2 )) =(1/4)ln∣((t+1)/(t−1))∣−(1/(4(t−1))) −(1/(4(t+1))) +c_2   ⇒  I =−2ln∣((t−1)/(t+1))∣  −ln∣((t+1)/(t−1))∣ +(1/(t−1)) +(1/(t+1)) +C ⇒  I =ln∣((t+1)/(t−1))∣ +(1/(t−1)) +(1/(t+1)) +C  I =ln∣(((√((x−2)/(x−4)))+1)/((√((x−2)/(x−4)))−1))∣ +(1/((√((x−2)/(x−4)))−1)) +(1/((√((x−2)/(x−4)))+1)) +C .

2)letI=x2x4dxchangementx2x4=tgivex2x4=t2x2=t2x4t2(1t2)x=24t2x=4t2+21t2=4t22t21dxdt=8t(t21)(4t22)2t(t21)2=8t38t8t3+4t(t21)2=4t(t21)2I=t(4t(t21)2)dt=4t2(t21)2dt=4t21+1(t21)2dt=4dtt214dt(t21)2butdtt21=12(1t11t+1)dt=12lnt1t+1+c1letdecomposeF(t)=1(t21)2F(t)=1(t1)2(t+1)2=at1+b(t1)2+c(t+1)+d(t+1)2b=limt1(t1)2F(t)=14d=limt1(t+1)2F(t)=14F(t)=at1+14(t1)2+ct+1+14(t+1)2F(t)=F(t)at+1+14(t+1)2+ct1+14(t1)2=F(t)c=aF(t)=at1+14(t1)2at+1+14(t+1)2F(0)=1=a+14a+142a+12=12a=12a=14F(x)=14(t1)+14(t+1)+14(t1)2+14(t+1)2dt(t21)2=14lnt+1t114(t1)14(t+1)+c2I=2lnt1t+1lnt+1t1+1t1+1t+1+CI=lnt+1t1+1t1+1t+1+CI=lnx2x4+1x2x41+1x2x41+1x2x4+1+C.

Answered by MJS last updated on 18/Jan/19

(1)  t=(√((4+x)/(2−x))) → x=((2(t^2 −2))/(t^2 +1)); dx=((√((2−x)^3 (4+x)))/3)dt  12∫(dt/((t^2 +1)^2 ))  u=arctan t → t=tan u; dt=(t^2 +1)du  12∫cos^2  u du

(1)t=4+x2xx=2(t22)t2+1;dx=(2x)3(4+x)3dt12dt(t2+1)2u=arctantt=tanu;dt=(t2+1)du12cos2udu

Answered by MJS last updated on 18/Jan/19

(2)  t=(√((x−4)/(x−2))) → x=((2(t^2 −2))/((t^2 −1))); dx=(√((x−4)(x−2)^3 ))dt  4∫(dt/((t^2 −1)^2 ))  u=arcsin (1/t) → t=(1/(sin u)); dt=−t(√(t^2 −1))du  −4∫((sin^2  u)/(cos^3  u))du=−4∫sec^3  u −sec u du

(2)t=x4x2x=2(t22)(t21);dx=(x4)(x2)3dt4dt(t21)2u=arcsin1tt=1sinu;dt=tt21du4sin2ucos3udu=4sec3usecudu

Answered by MJS last updated on 18/Jan/19

(3)  t=x−3 → dt=dx  ∫(√(t^2 −1))dt  u=arccos (1/t) → t=(1/(cos u)); dt=t(√(t^2 −1))du  ∫((sin^2  u)/(cos^3  u))du ...

(3)t=x3dt=dxt21dtu=arccos1tt=1cosu;dt=tt21dusin2ucos3udu...

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jan/19

1)∫((2−x)/(√((4+x)(2−x))))dx  ∫((2−x)/(√(8−4x+2x−x^2 )))dx  ∫((2−x)/(√(8−2x−x^2 )))  (1/2)∫((−2−2x+6)/(√(8−2x−x^2 )))dx  =(1/2)∫((d(8−2x−x^2 ))/(√(8−2x−x^2 )))+3∫(dx/(√((3)^2 −(x+1)^2 )))  =(1/2)×(((8−2x−x^2 )^(((−1)/2)+1) )/(((−1)/2)+1))+3sin^(−1) (((x+1)/3))+c  =(8−2x−x^2 )^(1/2) +3sin^(−1) (((x+1)/3))+c  2)∫((x−2)/(√((x−2)(x−4))))dx  ∫((x−2)/(√(x^2 −6x+8)))dx  (1/2)∫((2x−6+2)/(√(x^2 −6x+8)))dx  (1/2)∫((d(x^2 −6x+8))/(√(x^2 −6x+8)))+∫(dx/(√((x−3)^2 −1)))  (1/2)×(((x^2 −6x+8)^(((−1)/2)+1) )/(((−1)/2)+1))+ln{(x−3)+(√((x−3)^2 −1)) }+c  =(x^2 −6x+8)^(1/2) +ln{(x−3)+(√(x^2 −6x+8)) }+c  3∫(√((x−2)(x−4))) dx  ∫(√((x−3)^2 −1)) dx  =(((x−3))/2)(√((x−3)^2 −1)) −(1/2)ln{(x−3)+(√((x−3)^2 −1)) }+c  =(((x−3))/2)(√(x^2 −6x+8)) −(1/2)ln{(x−3)+(√((x^2 −6x+8))

1)2x(4+x)(2x)dx2x84x+2xx2dx2x82xx21222x+682xx2dx=12d(82xx2)82xx2+3dx(3)2(x+1)2=12×(82xx2)12+112+1+3sin1(x+13)+c=(82xx2)12+3sin1(x+13)+c2)x2(x2)(x4)dxx2x26x+8dx122x6+2x26x+8dx12d(x26x+8)x26x+8+dx(x3)2112×(x26x+8)12+112+1+ln{(x3)+(x3)21}+c=(x26x+8)12+ln{(x3)+x26x+8}+c3(x2)(x4)dx(x3)21dx=(x3)2(x3)2112ln{(x3)+(x3)21}+c=(x3)2x26x+812ln{(x3)+(x26x+8

Commented by rahul 19 last updated on 18/Jan/19

Thank you Sir!

ThankyouSir!

Commented by Otchere Abdullai last updated on 18/Jan/19

wow! well done sir!

wow!welldonesir!

Answered by MJS last updated on 18/Jan/19

(4)  =∫((cos x)/(3+cos x sin x))dx  Weyerstrass  t=tan (x/2) → x=2arctan t; dx=2cos^2  (x/2) dt=((2dt)/(t^2 +1))  cos x =−((t^2 −1)/(t^2 +1)); sin x =((2t)/(t^2 +1))  −2∫((t^2 −1)/((t^2 −2t+3)(3t^2 +2t+1)))dt  now decompose...  ((t^2 −1)/((t^2 −2t+3)(3t^2 +2t+1)))=(1/8)×((t+1)/(t^2 −2t+3))−(3/8)×((t+1)/(3t^2 +2t+1))  ((t+1)/(t^2 −2t+3))=((t−1)/(t^2 −2t+3))+(2/(t^2 −2t+3))  ((t+1)/(3t^2 +2t+1))=((6t+2)/(6(3t^2 +2t+1)))+(4/(6(3t^2 +2t+1)))=  =(1/3)×((3t+1)/(3t^2 +2t+1))+(2/3)×(1/(3t^2 +2t+1))  now use formulas

(4)=cosx3+cosxsinxdxWeyerstrasst=tanx2x=2arctant;dx=2cos2x2dt=2dtt2+1cosx=t21t2+1;sinx=2tt2+12t21(t22t+3)(3t2+2t+1)dtnowdecompose...t21(t22t+3)(3t2+2t+1)=18×t+1t22t+338×t+13t2+2t+1t+1t22t+3=t1t22t+3+2t22t+3t+13t2+2t+1=6t+26(3t2+2t+1)+46(3t2+2t+1)==13×3t+13t2+2t+1+23×13t2+2t+1nowuseformulas

Commented by rahul 19 last updated on 18/Jan/19

Thank You Sir!

ThankYouSir!

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jan/19

4)∫(dx/(2sinx+3secx))  ∫((cosxdx)/(3+2sinxcosx))  (1/2)∫((cosx−sinx+cosx+sinx)/(3+2sinxcosx))dx  (1/2)∫((cosx−sinx)/(2+(sinx+cosx)^2 ))dx+(1/2)∫((d(sinx−cosx))/(4−(1−2sinxcosx)))  (1/2)∫((d(sinx+cosx))/(((√2) )^2 +(sinx+cosx)^2 ))+(1/2)∫((d(sinx−cosx))/(4−(sinx−cosx)^2 ))←formula∫(dx/(a^2 −x^2 ))  (1/2)×(1/(√2))tan^(−1) (((sinx+cosx)/(√2)))+(1/2)×(1/(2×2))ln(((2+sinx−cosx)/(2−sinx+cosx)))+c

4)dx2sinx+3secxcosxdx3+2sinxcosx12cosxsinx+cosx+sinx3+2sinxcosxdx12cosxsinx2+(sinx+cosx)2dx+12d(sinxcosx)4(12sinxcosx)12d(sinx+cosx)(2)2+(sinx+cosx)2+12d(sinxcosx)4(sinxcosx)2formuladxa2x212×12tan1(sinx+cosx2)+12×12×2ln(2+sinxcosx2sinx+cosx)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com