Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53168 by ajfour last updated on 18/Jan/19

Commented by ajfour last updated on 19/Jan/19

Equilateral △ABC  contains  two circles  of radii a and b in the  manner shown. Find the radius  R of a circle that touches these two  circles externally and passes through  vertex A in terms of a and b.

$${Equilateral}\:\bigtriangleup{ABC}\:\:{contains} \\ $$$${two}\:{circles}\:\:{of}\:{radii}\:{a}\:{and}\:{b}\:{in}\:{the} \\ $$$${manner}\:{shown}.\:{Find}\:{the}\:{radius} \\ $$$${R}\:{of}\:{a}\:{circle}\:{that}\:{touches}\:{these}\:{two} \\ $$$${circles}\:{externally}\:{and}\:{passes}\:{through} \\ $$$${vertex}\:{A}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}.\:\:\:\:\:\: \\ $$

Commented by behi83417@gmail.com last updated on 18/Jan/19

R=b.((a+b)/(a−b))  ?

$${R}={b}.\frac{{a}+{b}}{{a}−{b}}\:\:? \\ $$

Commented by ajfour last updated on 18/Jan/19

so quick! how do you get it ?

$${so}\:{quick}!\:{how}\:{do}\:{you}\:{get}\:{it}\:? \\ $$

Commented by behi83417@gmail.com last updated on 18/Jan/19

side s is missing in your commonet.

$${side}\:{s}\:{is}\:{missing}\:{in}\:{your}\:{commonet}. \\ $$

Commented by ajfour last updated on 18/Jan/19

s is not even required, solution sir?

$${s}\:{is}\:{not}\:{even}\:{required},\:{solution}\:{sir}? \\ $$

Commented by MJS last updated on 20/Jan/19

s=1∧((√3)/(18))<a<((√3)/6): b=(1/3)((√3)−a−2(√((√3)a−2a^2 )))  for these values both circles stay within the  triangle and the big circle exists  I haven′t been able to get the coordinates  of P or the value of r

$${s}=\mathrm{1}\wedge\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}<{a}<\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}:\:{b}=\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt{\mathrm{3}}−{a}−\mathrm{2}\sqrt{\sqrt{\mathrm{3}}{a}−\mathrm{2}{a}^{\mathrm{2}} }\right) \\ $$$$\mathrm{for}\:\mathrm{these}\:\mathrm{values}\:\mathrm{both}\:\mathrm{circles}\:\mathrm{stay}\:\mathrm{within}\:\mathrm{the} \\ $$$$\mathrm{triangle}\:\mathrm{and}\:\mathrm{the}\:\mathrm{big}\:\mathrm{circle}\:\mathrm{exists} \\ $$$$\mathrm{I}\:\mathrm{haven}'\mathrm{t}\:\mathrm{been}\:\mathrm{able}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{coordinates} \\ $$$$\mathrm{of}\:{P}\:\mathrm{or}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{r} \\ $$

Answered by mr W last updated on 19/Jan/19

Commented by mr W last updated on 19/Jan/19

s=(√3)(a+b)+(√((a+b)^2 −(a−b)^2 ))=(√3)(a+b)+2(√(ab))  AM=(√((s−(√3)a)^2 +a^2 ))=(√(((√3)b+2(√(ab)))^2 +a^2 ))=(√(a^2 +3b^2 +4ab+4b(√(3ab))))  AN=(√((s−(√3)b)+b^2 ))=(√(3a^2 +b^2 +4ab+4a(√(ab))))  MN=a+b  PM=a+R  PN=b+R  AP=R  let ∠APM=α, ∠MPN=β  cos α=((R^2 +(R+a)^2 −(a^2 +3b^2 +4ab+4b(√(3ab))))/(2R(R+a)))  ⇒cos α=((2R^2 +2aR−3b^2 −4ab−4b(√(3ab)))/(2R(R+a)))  cos β=(((R+a)^2 +(R+b)^2 −(a+b)^2 )/(2(R+a)(R+b)))  ⇒cos β=((R^2 +(a+b)R−ab)/((R+a)(R+b)))  cos (α+β)=((R^2 +(R+b)^2 −(3a^2 +b^2 +4ab+4a(√(ab))))/(2R(R+b)))  ⇒cos (α+β)=((2R^2 +2bR−3a^2 −4ab−4a(√(ab)))/(2R(R+b)))    ⇒cos^(−1) ((2R^2 +2bR−3a^2 −4ab−4a(√(ab)))/(2R(R+b)))=cos^(−1) ((2R^2 +2aR−3b^2 −4ab−4b(√(3ab)))/(2R(R+a)))+cos^(−1) ((R^2 +(a+b)R−ab)/((R+a)(R+b)))  let μ=(b/a), λ=(R/a)  ⇒cos^(−1) {1−((3+4μ+4(√μ))/(2λ(λ+μ)))}=cos^(−1) {1−((3μ^2 +4μ+4μ(√(3μ)))/(2λ(λ+1)))}+cos^(−1) {1−((2μ)/((λ+1)(λ+μ)))}  ⇒λ=λ(μ)....

$${s}=\sqrt{\mathrm{3}}\left({a}+{b}\right)+\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} }=\sqrt{\mathrm{3}}\left({a}+{b}\right)+\mathrm{2}\sqrt{{ab}} \\ $$$${AM}=\sqrt{\left({s}−\sqrt{\mathrm{3}}{a}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} }=\sqrt{\left(\sqrt{\mathrm{3}}{b}+\mathrm{2}\sqrt{{ab}}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{4}{b}\sqrt{\mathrm{3}{ab}}} \\ $$$${AN}=\sqrt{\left({s}−\sqrt{\mathrm{3}}{b}\right)+{b}^{\mathrm{2}} }=\sqrt{\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{4}{a}\sqrt{{ab}}} \\ $$$${MN}={a}+{b} \\ $$$${PM}={a}+{R} \\ $$$${PN}={b}+{R} \\ $$$${AP}={R} \\ $$$${let}\:\angle{APM}=\alpha,\:\angle{MPN}=\beta \\ $$$$\mathrm{cos}\:\alpha=\frac{{R}^{\mathrm{2}} +\left({R}+{a}\right)^{\mathrm{2}} −\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{4}{b}\sqrt{\mathrm{3}{ab}}\right)}{\mathrm{2}{R}\left({R}+{a}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{2}{aR}−\mathrm{3}{b}^{\mathrm{2}} −\mathrm{4}{ab}−\mathrm{4}{b}\sqrt{\mathrm{3}{ab}}}{\mathrm{2}{R}\left({R}+{a}\right)} \\ $$$$\mathrm{cos}\:\beta=\frac{\left({R}+{a}\right)^{\mathrm{2}} +\left({R}+{b}\right)^{\mathrm{2}} −\left({a}+{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({R}+{a}\right)\left({R}+{b}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{{R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}}{\left({R}+{a}\right)\left({R}+{b}\right)} \\ $$$$\mathrm{cos}\:\left(\alpha+\beta\right)=\frac{{R}^{\mathrm{2}} +\left({R}+{b}\right)^{\mathrm{2}} −\left(\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{4}{ab}+\mathrm{4}{a}\sqrt{{ab}}\right)}{\mathrm{2}{R}\left({R}+{b}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\left(\alpha+\beta\right)=\frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{2}{bR}−\mathrm{3}{a}^{\mathrm{2}} −\mathrm{4}{ab}−\mathrm{4}{a}\sqrt{{ab}}}{\mathrm{2}{R}\left({R}+{b}\right)} \\ $$$$ \\ $$$$\Rightarrow\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{2}{bR}−\mathrm{3}{a}^{\mathrm{2}} −\mathrm{4}{ab}−\mathrm{4}{a}\sqrt{{ab}}}{\mathrm{2}{R}\left({R}+{b}\right)}=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}{R}^{\mathrm{2}} +\mathrm{2}{aR}−\mathrm{3}{b}^{\mathrm{2}} −\mathrm{4}{ab}−\mathrm{4}{b}\sqrt{\mathrm{3}{ab}}}{\mathrm{2}{R}\left({R}+{a}\right)}+\mathrm{cos}^{−\mathrm{1}} \frac{{R}^{\mathrm{2}} +\left({a}+{b}\right){R}−{ab}}{\left({R}+{a}\right)\left({R}+{b}\right)} \\ $$$${let}\:\mu=\frac{{b}}{{a}},\:\lambda=\frac{{R}}{{a}} \\ $$$$\Rightarrow\mathrm{cos}^{−\mathrm{1}} \left\{\mathrm{1}−\frac{\mathrm{3}+\mathrm{4}\mu+\mathrm{4}\sqrt{\mu}}{\mathrm{2}\lambda\left(\lambda+\mu\right)}\right\}=\mathrm{cos}^{−\mathrm{1}} \left\{\mathrm{1}−\frac{\mathrm{3}\mu^{\mathrm{2}} +\mathrm{4}\mu+\mathrm{4}\mu\sqrt{\mathrm{3}\mu}}{\mathrm{2}\lambda\left(\lambda+\mathrm{1}\right)}\right\}+\mathrm{cos}^{−\mathrm{1}} \left\{\mathrm{1}−\frac{\mathrm{2}\mu}{\left(\lambda+\mathrm{1}\right)\left(\lambda+\mu\right)}\right\} \\ $$$$\Rightarrow\lambda=\lambda\left(\mu\right).... \\ $$

Commented by ajfour last updated on 19/Jan/19

Thanks sir, very better way, i had  resorted to a coordinate like method.

$${Thanks}\:{sir},\:{very}\:{better}\:{way},\:{i}\:{had} \\ $$$${resorted}\:{to}\:{a}\:{coordinate}\:{like}\:{method}. \\ $$

Answered by ajfour last updated on 19/Jan/19

Commented by ajfour last updated on 19/Jan/19

let midpoint of BC be origin O,  with x-axis along BC.  M(−(s/2)+a(√3), a)  ; N((s/2)−b(√3), b)  A(0,((s(√3))/2)) ;  s=(√3)(a+b)+2(√(ab))  let  P (h,k).  As MP = a+R  (h+(s/2)−a(√3))^2 +(k−a)^2 =(a+R)^2   As NP = b+R   (h−(s/2)+b(√3))^2 +(k−b)^2 =(b+R)^2   as AP = R      h^2 +(((s(√3))/2)−k)^2 = R^2  .

$${let}\:{midpoint}\:{of}\:{BC}\:{be}\:{origin}\:{O}, \\ $$$${with}\:{x}-{axis}\:{along}\:{BC}. \\ $$$${M}\left(−\frac{{s}}{\mathrm{2}}+{a}\sqrt{\mathrm{3}},\:{a}\right)\:\:;\:{N}\left(\frac{{s}}{\mathrm{2}}−{b}\sqrt{\mathrm{3}},\:{b}\right) \\ $$$${A}\left(\mathrm{0},\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:;\:\:{s}=\sqrt{\mathrm{3}}\left({a}+{b}\right)+\mathrm{2}\sqrt{{ab}} \\ $$$${let}\:\:{P}\:\left({h},{k}\right).\:\:{As}\:{MP}\:=\:{a}+{R} \\ $$$$\left({h}+\frac{{s}}{\mathrm{2}}−{a}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\left({k}−{a}\right)^{\mathrm{2}} =\left({a}+{R}\right)^{\mathrm{2}} \\ $$$${As}\:{NP}\:=\:{b}+{R} \\ $$$$\:\left({h}−\frac{{s}}{\mathrm{2}}+{b}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} +\left({k}−{b}\right)^{\mathrm{2}} =\left({b}+{R}\right)^{\mathrm{2}} \\ $$$${as}\:{AP}\:=\:{R} \\ $$$$\:\:\:\:{h}^{\mathrm{2}} +\left(\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}−{k}\right)^{\mathrm{2}} =\:{R}^{\mathrm{2}} \:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com