Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 532 by 123456 last updated on 25/Jan/15

if f is continuos and diferentiable  everywhere on R, if f(0)=0 and  ∣f′(x)∣≤∣f(x)∣ then proof that  f(x)=0

$${if}\:{f}\:{is}\:{continuos}\:{and}\:{diferentiable} \\ $$$${everywhere}\:{on}\:\mathbb{R},\:{if}\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$$\mid{f}'\left({x}\right)\mid\leqslant\mid{f}\left({x}\right)\mid\:{then}\:{proof}\:{that} \\ $$$${f}\left({x}\right)=\mathrm{0} \\ $$

Answered by prakash jain last updated on 06/Feb/15

f ′0)=0 since ∣f ′(x)∣≤∣f(x)∣  f ′(0)=lim_(δx→0) ((f(δx))/(δx))=lim_(δx→0) ((f(−δx))/(−δx))   ⇒f(δx)=f(−δx)=0 ⇒f ′(δx)=f ′(δx)=0  Continuing this step it is clear  f(x)=0  ∀x∈R

$$\left.{f}\:'\mathrm{0}\right)=\mathrm{0}\:\mathrm{since}\:\mid{f}\:'\left({x}\right)\mid\leqslant\mid{f}\left({x}\right)\mid \\ $$$${f}\:'\left(\mathrm{0}\right)=\underset{\delta{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left(\delta{x}\right)}{\delta{x}}=\underset{\delta{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left(−\delta{x}\right)}{−\delta{x}} \\ $$$$\:\Rightarrow{f}\left(\delta{x}\right)={f}\left(−\delta{x}\right)=\mathrm{0}\:\Rightarrow{f}\:'\left(\delta{x}\right)={f}\:'\left(\delta{x}\right)=\mathrm{0} \\ $$$$\mathrm{Continuing}\:\mathrm{this}\:\mathrm{step}\:\mathrm{it}\:\mathrm{is}\:\mathrm{clear} \\ $$$${f}\left({x}\right)=\mathrm{0}\:\:\forall{x}\in\mathbb{R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com