All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53228 by maxmathsup by imad last updated on 19/Jan/19
1)findf(a)=∫01dx(ax+1)x2−x+1witha>0 2)calculatef′(a) 3)findthevalueof∫01xdx(ax+1)2x2−x+1 4)calculate∫01dx(2x+1)x2−x+1and∫01xdx(2x+1)2x2−x+1
Commented byAbdo msup. last updated on 20/Jan/19
1)wehavex2−x+1=(x−12)2+34changement x−12=32sh(t)give f(a)=∫argsh(−13)argsh(13)1(a(12+32sh(t))+1)32ch(t)32ch(t)dt =∫ln(−13+23)ln(13+23)2dta+a3sh(t)+2 =∫ln(13)ln(3)2dta+a3et−e−t2+2 =4∫ln(13)ln(3)dt2a+a3(et−e−t)+4 =et=u4∫13312a+a3(u−u−1)+4duu =4∫133du2au+a3u2−a3+4u =4∫133dua3u2+(2a+4)u−a3 rootsofp(u)=a3u2+(2a+4)u−a3 Δ′=(a+2)2+3a2=a2+4a+4+3a2=4a2+4a+ u1=−a−2+21+a+a2a3 u2=−a−2−21+a+a2a3⇒ F(u)=1a3(u−u1)(u−u2) =1a31u1−u2{1u−u1−1u−u2} =1a3141+a+a2a3{1u−u1−1u−u2} =141+a+a2{1u−u1−1u−u2}?⇒ f(a)=11+a+a2[ln∣u−u1u−u2∣]133 =11+a+a2{ln∣3−u13−u2∣−ln∣13−u113−u2∣} =11+a+a2{ln∣3−−a−2+21+a+a2a33−−a−2+21+a+a2a3∣ −ln∣1−3−a−2+21+a+a2a31−3−a−2−21+a+a2a3∣ =11+a+a2{ln∣4a+2+21+a+a24a+2−21+a+a2∣ −ln∣2a3+2−21+a+a22a3+2+21+a+a2∣} ⇒f(a)=11+a+a2{ln∣2a+1+1+a+a22a+1−1+a+a2∣ −ln∣a3+1−1+a+a2a3+1+1+a+a2∣}.
wehavef′(a)=∫01−xdx(ax+1)2x2−x+1⇒ ∫01xdx(ax+1)2x2−x+1=−f′(a)restcalculusof f′(a)..becontinued...
4)∫01dx(2x+1)x2−x+1=f(2) =11+2+22{ln∣5+1+2+225−1+2+22∣−ln∣23+1−1+2+2223+1+1+2+22∣} =17{ln∣5+75−7∣−ln∣23+1−723+1+7∣}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com