Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100047 by Ar Brandon last updated on 24/Jun/20

∫_0 ^1 e^(−x^2 ) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$

Answered by smridha last updated on 24/Jun/20

=((√𝛑)/2)erf(1)

$$=\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{2}}{erf}\left(\mathrm{1}\right) \\ $$

Commented by Ar Brandon last updated on 24/Jun/20

Thanks, but how do we arrive there ? Or is it just a theory ?

Commented by smridha last updated on 24/Jun/20

yeah you can say that  the fact is..  erf(x)=(2/(√𝛑))∫_0 ^x e^(−t^2 ) dt  well I have defferent way wait  I post it...

$$\boldsymbol{{yeah}}\:\boldsymbol{{you}}\:\boldsymbol{{can}}\:\boldsymbol{{say}}\:\boldsymbol{{that}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{fact}}\:\boldsymbol{{is}}.. \\ $$$$\boldsymbol{{erf}}\left(\boldsymbol{{x}}\right)=\frac{\mathrm{2}}{\sqrt{\boldsymbol{\pi}}}\int_{\mathrm{0}} ^{{x}} \boldsymbol{{e}}^{−\boldsymbol{{t}}^{\mathrm{2}} } \boldsymbol{{dt}} \\ $$$$\boldsymbol{{well}}\:\boldsymbol{{I}}\:\boldsymbol{{have}}\:\boldsymbol{{defferent}}\:\boldsymbol{{way}}\:\boldsymbol{{wait}} \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{post}}\:\boldsymbol{{it}}... \\ $$

Answered by smridha last updated on 24/Jun/20

=∫_0 ^1 Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(n!))dx  =1.Σ_(n=0) ^∞ (((−1)^n )/(n!(2n+1)))  =Σ_(n=0) ^∞ ((1/2)/((n+(1/2)))).(((−1)^n )/(n!))  =Σ_(n=0 ) ^∞ ((((1/2))_n )/(((3/2))_n )).(((−1)^n )/(n!))  =M((1/2),(3/2),−1)or _1 F_1 ((1/2);(3/2);−1)  this is called confluent hypergeometric  f^n .  note:(a)=(((a)_n )/((a+1)_n ))(a+n)[pochhammer symbol]

$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \boldsymbol{{x}}^{\mathrm{2}\boldsymbol{{n}}} }{\boldsymbol{{n}}!}\boldsymbol{{dx}} \\ $$$$=\mathrm{1}.\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} }{\boldsymbol{{n}}!\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)} \\ $$$$=\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\left(\boldsymbol{{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}.\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} }{\boldsymbol{{n}}!} \\ $$$$=\underset{\boldsymbol{{n}}=\mathrm{0}\:} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{\boldsymbol{{n}}} }{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)_{\boldsymbol{{n}}} }.\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} }{\boldsymbol{{n}}!} \\ $$$$=\boldsymbol{{M}}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}},−\mathrm{1}\right)\boldsymbol{{or}}\:_{\mathrm{1}} \boldsymbol{{F}}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};−\mathrm{1}\right) \\ $$$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{called}}\:\boldsymbol{{confluent}}\:\boldsymbol{{hypergeometric}} \\ $$$$\boldsymbol{{f}}^{\boldsymbol{{n}}} . \\ $$$$\boldsymbol{{note}}:\left(\boldsymbol{{a}}\right)=\frac{\left(\boldsymbol{{a}}\right)_{\boldsymbol{{n}}} }{\left(\boldsymbol{{a}}+\mathrm{1}\right)_{\boldsymbol{{n}}} }\left(\boldsymbol{{a}}+\boldsymbol{{n}}\right)\left[\boldsymbol{{pochhammer}}\:\boldsymbol{{symbol}}\right] \\ $$

Commented by Ar Brandon last updated on 24/Jun/20

Thanks so very much��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com