Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 53422 by ajfour last updated on 21/Jan/19

Commented by ajfour last updated on 21/Jan/19

Find maximum inradius and  minimum circumradius in terms  of a and b if AB of △ABC is variable.

$${Find}\:{maximum}\:{inradius}\:{and} \\ $$$${minimum}\:{circumradius}\:{in}\:{terms} \\ $$$${of}\:{a}\:{and}\:{b}\:{if}\:{AB}\:{of}\:\bigtriangleup{ABC}\:{is}\:{variable}. \\ $$

Commented by mr W last updated on 21/Jan/19

very very nice question sir!

$${very}\:{very}\:{nice}\:{question}\:{sir}! \\ $$

Answered by mr W last updated on 21/Jan/19

find minimum circumcircle:    let b≥a, γ=∠C  AB=x=a^2 +b^2 −2ab cos γ  R=(x/(2 sin γ))  S=4R^2 =((a^2 +b^2 −2ab cos γ)/(sin^2  γ))  =((a^2 +b^2 −2ab cos γ)/(1−cos^2  γ))  =((a^2 +b^2 −2abλ)/(1−λ^2 )) with λ=cos γ  (dS/dλ)=0  ((−2ab)/(1−λ^2 ))+(((a^2 +b^2 −2abλ)2λ)/((1−λ^2 )^2 ))=0  (((a^2 +b^2 −2abλ)λ)/(1−λ^2 ))=ab  ⇒abλ^2 −(a^2 +b^2 )λ+ab=0  ⇒λ=((a^2 +b^2 −(b^2 −a^2 ))/(2ab))=(a/b)  i.e. minimum circumcircle is when  ΔABC is right angled at B.  ⇒R_(min) =(b/2)  this result is obvious, since center of  circumcircle lies on the perpendicular  bisector of AC, therefore the minimum  circumcircle is when its center is the  midpoint of AC, i.e. R_(min) =(b/2).

$${find}\:{minimum}\:{circumcircle}: \\ $$$$ \\ $$$${let}\:{b}\geqslant{a},\:\gamma=\angle{C} \\ $$$${AB}={x}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma \\ $$$${R}=\frac{{x}}{\mathrm{2}\:\mathrm{sin}\:\gamma} \\ $$$${S}=\mathrm{4}{R}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma}{\mathrm{sin}^{\mathrm{2}} \:\gamma} \\ $$$$=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\gamma} \\ $$$$=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\lambda}{\mathrm{1}−\lambda^{\mathrm{2}} }\:{with}\:\lambda=\mathrm{cos}\:\gamma \\ $$$$\frac{{dS}}{{d}\lambda}=\mathrm{0} \\ $$$$\frac{−\mathrm{2}{ab}}{\mathrm{1}−\lambda^{\mathrm{2}} }+\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\lambda\right)\mathrm{2}\lambda}{\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\lambda\right)\lambda}{\mathrm{1}−\lambda^{\mathrm{2}} }={ab} \\ $$$$\Rightarrow{ab}\lambda^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\lambda+{ab}=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}{\mathrm{2}{ab}}=\frac{{a}}{{b}} \\ $$$${i}.{e}.\:{minimum}\:{circumcircle}\:{is}\:{when} \\ $$$$\Delta{ABC}\:{is}\:{right}\:{angled}\:{at}\:{B}. \\ $$$$\Rightarrow{R}_{{min}} =\frac{{b}}{\mathrm{2}} \\ $$$${this}\:{result}\:{is}\:{obvious},\:{since}\:{center}\:{of} \\ $$$${circumcircle}\:{lies}\:{on}\:{the}\:{perpendicular} \\ $$$${bisector}\:{of}\:{AC},\:{therefore}\:{the}\:{minimum} \\ $$$${circumcircle}\:{is}\:{when}\:{its}\:{center}\:{is}\:{the} \\ $$$${midpoint}\:{of}\:{AC},\:{i}.{e}.\:{R}_{{min}} =\frac{{b}}{\mathrm{2}}. \\ $$

Commented by ajfour last updated on 21/Jan/19

Thanks for a great solution and the  correction, Sir.

$${Thanks}\:{for}\:{a}\:{great}\:{solution}\:{and}\:{the} \\ $$$${correction},\:{Sir}. \\ $$

Answered by ajfour last updated on 21/Jan/19

Answered by mr W last updated on 22/Jan/19

find maximum incircle:  Δ=((ab sin γ)/2)=(((a+b+x)r)/2)  ⇒r=((ab sin γ)/(a+b+x))=((ab sin γ)/(a+b+(√(a^2 +b^2 −2ab cos γ))))  (dr/dγ)=0  cos γ=((ab sin^2  γ)/(a^2 +b^2 −2ab cos γ+(a+b)(√(a^2 +b^2 −2ab cos γ))))  cos γ=((sin^2  γ)/((((a+b)^2 )/(ab))−2(1+cos γ)+(((a+b)^2 )/(ab))(√(1−((2(1+cos γ))/(((a+b)^2 )/(ab)))))))  with μ=(((a+b)^2 )/(ab)), λ=cos γ  ⇒μ−2(1+λ)+(√(μ[μ−2(1+λ)]))=(1/λ)−λ  ⇒λ=λ(μ)....    examples:  a=4, b=4⇒γ=76.3454°  a=4, b=3⇒γ=76.9848°  a=4, b=2⇒γ=79.3510°

$${find}\:{maximum}\:{incircle}: \\ $$$$\Delta=\frac{{ab}\:\mathrm{sin}\:\gamma}{\mathrm{2}}=\frac{\left({a}+{b}+{x}\right){r}}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{{ab}\:\mathrm{sin}\:\gamma}{{a}+{b}+{x}}=\frac{{ab}\:\mathrm{sin}\:\gamma}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma}} \\ $$$$\frac{{dr}}{{d}\gamma}=\mathrm{0} \\ $$$$\mathrm{cos}\:\gamma=\frac{{ab}\:\mathrm{sin}^{\mathrm{2}} \:\gamma}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma+\left({a}+{b}\right)\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\gamma}} \\ $$$$\mathrm{cos}\:\gamma=\frac{\mathrm{sin}^{\mathrm{2}} \:\gamma}{\frac{\left({a}+{b}\right)^{\mathrm{2}} }{{ab}}−\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\gamma\right)+\frac{\left({a}+{b}\right)^{\mathrm{2}} }{{ab}}\sqrt{\mathrm{1}−\frac{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\gamma\right)}{\frac{\left({a}+{b}\right)^{\mathrm{2}} }{{ab}}}}} \\ $$$${with}\:\mu=\frac{\left({a}+{b}\right)^{\mathrm{2}} }{{ab}},\:\lambda=\mathrm{cos}\:\gamma \\ $$$$\Rightarrow\mu−\mathrm{2}\left(\mathrm{1}+\lambda\right)+\sqrt{\mu\left[\mu−\mathrm{2}\left(\mathrm{1}+\lambda\right)\right]}=\frac{\mathrm{1}}{\lambda}−\lambda \\ $$$$\Rightarrow\lambda=\lambda\left(\mu\right).... \\ $$$$ \\ $$$${examples}: \\ $$$${a}=\mathrm{4},\:{b}=\mathrm{4}\Rightarrow\gamma=\mathrm{76}.\mathrm{3454}° \\ $$$${a}=\mathrm{4},\:{b}=\mathrm{3}\Rightarrow\gamma=\mathrm{76}.\mathrm{9848}° \\ $$$${a}=\mathrm{4},\:{b}=\mathrm{2}\Rightarrow\gamma=\mathrm{79}.\mathrm{3510}° \\ $$

Commented by mr W last updated on 21/Jan/19

i have expected that the maximum  incircle is in an isosceles triangle,  but it isn′t.

$${i}\:{have}\:{expected}\:{that}\:{the}\:{maximum} \\ $$$${incircle}\:{is}\:{in}\:{an}\:{isosceles}\:{triangle}, \\ $$$${but}\:{it}\:{isn}'{t}. \\ $$

Commented by ajfour last updated on 21/Jan/19

Very Nice! Sir. (never mind)

$${Very}\:\mathcal{N}{ice}!\:{Sir}.\:\left({never}\:{mind}\right) \\ $$

Answered by MJS last updated on 23/Jan/19

the maximum incircle is at  x=((a+b)/3)(−1+4sin ((1/3)(π+arcsin ((4a^2 −19ab+4b^2 )/(4(a+b)^2 )))))

$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{incircle}\:\mathrm{is}\:\mathrm{at} \\ $$$${x}=\frac{{a}+{b}}{\mathrm{3}}\left(−\mathrm{1}+\mathrm{4sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\left(\pi+\mathrm{arcsin}\:\frac{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{19}{ab}+\mathrm{4}{b}^{\mathrm{2}} }{\mathrm{4}\left({a}+{b}\right)^{\mathrm{2}} }\right)\right)\right) \\ $$

Commented by mr W last updated on 22/Jan/19

great solution! did you solve a cubic eqn.  to get this result?

$${great}\:{solution}!\:{did}\:{you}\:{solve}\:{a}\:{cubic}\:{eqn}. \\ $$$${to}\:{get}\:{this}\:{result}? \\ $$

Commented by MJS last updated on 23/Jan/19

yes Sir. I took Heron′s formula for the  incircle and set it′s derivate =0 just to see  if it′s possible to go this way... and it has  been possible!

$$\mathrm{yes}\:\mathrm{Sir}.\:\mathrm{I}\:\mathrm{took}\:\mathrm{Heron}'\mathrm{s}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{incircle}\:\mathrm{and}\:\mathrm{set}\:\mathrm{it}'\mathrm{s}\:\mathrm{derivate}\:=\mathrm{0}\:\mathrm{just}\:\mathrm{to}\:\mathrm{see} \\ $$$$\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{go}\:\mathrm{this}\:\mathrm{way}...\:\mathrm{and}\:\mathrm{it}\:\mathrm{has} \\ $$$$\mathrm{been}\:\mathrm{possible}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com