Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 53426 by Necxx last updated on 21/Jan/19

The general solution of the equation  (dy/dx)+ylnx=x^(−x)   a)x^x (1−ce^x )  b)−x^(−x) (1+ce^(2x) )  c)−x^(−x) (1−ce^x )

$${The}\:{general}\:{solution}\:{of}\:{the}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+{ylnx}={x}^{−{x}} \\ $$$$\left.{a}\left.\right){x}^{{x}} \left(\mathrm{1}−{ce}^{{x}} \right)\:\:{b}\right)−{x}^{−{x}} \left(\mathrm{1}+{ce}^{\mathrm{2}{x}} \right) \\ $$$$\left.{c}\right)−{x}^{−{x}} \left(\mathrm{1}−{ce}^{{x}} \right) \\ $$

Commented by maxmathsup by imad last updated on 26/May/19

the equation is y^′  +yln(x) =x^(−x)   (he) →y^′  +yln(x) =0 ⇒y^′  =−yln(x) ⇒(y^′ /y) =−ln(x) ⇒ln∣y∣ =−∫ ln(x)dx +c  =−(xlnx −x) +c =−xln(x) +x +c ⇒y(x) =k e^x  x^(−x)   =k e^(x−xlnx)   mvc method →y^′  =k^′  e^(x−xlnx)  +k (x−xlnx)^′  e^(x−xlnx)   =(k^′  +k(1 −(lnx+1))e^(x−xlnx)  =(k^′ −kln(x))e^(x−xln(x))   (e) ⇒(k^′ −k ln(x))e^(x−xln(x))   +k e^x x^(−x) ln(x) =e^(−xln(x))  ⇒  k^′  e^(x−xln(x))  −k ln(x)e^(x−xln(x))   +kln(x) e^(x−xln(x))  =e^(−xln(x))  ⇒  k^′  e^(x−xln(x))  =e^(−xln(x))  ⇒k^′  =e^(−x)  ⇒k(x) =−e^(−x)  +λ ⇒  y(x) =(−e^(−x)  +λ)e^x  x^(−x)  =(λe^x −1)x^(−x)    so the true answer is (c) .

$${the}\:{equation}\:{is}\:{y}^{'} \:+{yln}\left({x}\right)\:={x}^{−{x}} \\ $$$$\left({he}\right)\:\rightarrow{y}^{'} \:+{yln}\left({x}\right)\:=\mathrm{0}\:\Rightarrow{y}^{'} \:=−{yln}\left({x}\right)\:\Rightarrow\frac{{y}^{'} }{{y}}\:=−{ln}\left({x}\right)\:\Rightarrow{ln}\mid{y}\mid\:=−\int\:{ln}\left({x}\right){dx}\:+{c} \\ $$$$=−\left({xlnx}\:−{x}\right)\:+{c}\:=−{xln}\left({x}\right)\:+{x}\:+{c}\:\Rightarrow{y}\left({x}\right)\:={k}\:{e}^{{x}} \:{x}^{−{x}} \:\:={k}\:{e}^{{x}−{xlnx}} \\ $$$${mvc}\:{method}\:\rightarrow{y}^{'} \:={k}^{'} \:{e}^{{x}−{xlnx}} \:+{k}\:\left({x}−{xlnx}\right)^{'} \:{e}^{{x}−{xlnx}} \\ $$$$=\left({k}^{'} \:+{k}\left(\mathrm{1}\:−\left({lnx}+\mathrm{1}\right)\right){e}^{{x}−{xlnx}} \:=\left({k}^{'} −{kln}\left({x}\right)\right){e}^{{x}−{xln}\left({x}\right)} \right. \\ $$$$\left({e}\right)\:\Rightarrow\left({k}^{'} −{k}\:{ln}\left({x}\right)\right){e}^{{x}−{xln}\left({x}\right)} \:\:+{k}\:{e}^{{x}} {x}^{−{x}} {ln}\left({x}\right)\:={e}^{−{xln}\left({x}\right)} \:\Rightarrow \\ $$$${k}^{'} \:{e}^{{x}−{xln}\left({x}\right)} \:−{k}\:{ln}\left({x}\right){e}^{{x}−{xln}\left({x}\right)} \:\:+{kln}\left({x}\right)\:{e}^{{x}−{xln}\left({x}\right)} \:={e}^{−{xln}\left({x}\right)} \:\Rightarrow \\ $$$${k}^{'} \:{e}^{{x}−{xln}\left({x}\right)} \:={e}^{−{xln}\left({x}\right)} \:\Rightarrow{k}^{'} \:={e}^{−{x}} \:\Rightarrow{k}\left({x}\right)\:=−{e}^{−{x}} \:+\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)\:=\left(−{e}^{−{x}} \:+\lambda\right){e}^{{x}} \:{x}^{−{x}} \:=\left(\lambda{e}^{{x}} −\mathrm{1}\right){x}^{−{x}} \:\:\:{so}\:{the}\:{true}\:{answer}\:{is}\:\left({c}\right)\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19

(dy/dx)+ylnx=x^(−x)   intregating factor=e^(∫lnx) =e^(xlnx−x)    .  e^(xlnx−x) (dy/dx)+ylnx×e^(xlnx−x) =x^(−x) ×e^(xlnx−x)   .  x^x e^(−x) (dy/dx)+ylnx×x^x e^(−x) =e^(−x)   x^x e^(−x) (dy/dx)+y×(x^x e^(−x) ×lnx)=e^(−x)   (d/dx)(y×x^x e^(−x) )=e^(−x)   d(yx^x e^(−x) )=e^(−x) dx  yx^x e^(−x) =(e^(−x) /(−1))+c  y=((−e^(−x) )/(x^x e^(−x) ))+(c/(x^x e^(−x) ))  y=(1/x^x )(−1+ce^x )=x^(−x) (−1+ce^x )  pls check ...

$$\frac{{dy}}{{dx}}+{ylnx}={x}^{−{x}} \\ $$$${intregating}\:{factor}={e}^{\int{lnx}} ={e}^{{xlnx}−{x}} \:\:\:. \\ $$$${e}^{{xlnx}−{x}} \frac{{dy}}{{dx}}+{ylnx}×{e}^{{xlnx}−{x}} ={x}^{−{x}} ×{e}^{{xlnx}−{x}} \:\:. \\ $$$${x}^{{x}} {e}^{−{x}} \frac{{dy}}{{dx}}+{ylnx}×{x}^{{x}} {e}^{−{x}} ={e}^{−{x}} \\ $$$${x}^{{x}} {e}^{−{x}} \frac{{dy}}{{dx}}+{y}×\left({x}^{{x}} {e}^{−{x}} ×{lnx}\right)={e}^{−{x}} \\ $$$$\frac{{d}}{{dx}}\left({y}×{x}^{{x}} {e}^{−{x}} \right)={e}^{−{x}} \\ $$$${d}\left({yx}^{{x}} {e}^{−{x}} \right)={e}^{−{x}} {dx} \\ $$$${yx}^{{x}} {e}^{−{x}} =\frac{{e}^{−{x}} }{−\mathrm{1}}+{c} \\ $$$${y}=\frac{−{e}^{−{x}} }{{x}^{{x}} {e}^{−{x}} }+\frac{{c}}{{x}^{{x}} {e}^{−{x}} } \\ $$$${y}=\frac{\mathrm{1}}{{x}^{{x}} }\left(−\mathrm{1}+{ce}^{{x}} \right)={x}^{−{x}} \left(−\mathrm{1}+{ce}^{{x}} \right) \\ $$$${pls}\:{check}\:... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Necxx last updated on 22/Jan/19

oh.....thanks so much

$${oh}.....{thanks}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com