Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 53450 by ajfour last updated on 22/Jan/19

Commented by ajfour last updated on 22/Jan/19

Find radius of inscribed sphere in  box.

$${Find}\:{radius}\:{of}\:{inscribed}\:{sphere}\:{in} \\ $$$${box}. \\ $$

Answered by ajfour last updated on 22/Jan/19

let D be origin. x axis be DA,  y axis be DC, z axis be DF.  E(a,0,2p) ; B(a,2a,0); G(0,2a,p);  F(0,0,3p).  BG×BE = (−ai+pk)×(−2aj+2pk)   ⇒  n^�  = 2a^2 k+2apj+2api  eq. of ceiling plane is     (r^� −3pk).n^� =0  ⇒  (r^� −3pk^� ).(pi^� +pj^� +ak^� )=0  ⇒  r^� .(pi^� +pj^� +ak^� )=3ap  center of sphere: G(r,r,r)  ⇒ [r(i+j+k)+((rn^� )/(∣n^� ∣))].(pi+pj+ak)=3ap  ⇒ r = ((3ap)/(2p+a+(√(2p^2 +a^2 )))) .

$${let}\:{D}\:{be}\:{origin}.\:{x}\:{axis}\:{be}\:{DA}, \\ $$$${y}\:{axis}\:{be}\:{DC},\:{z}\:{axis}\:{be}\:{DF}. \\ $$$${E}\left({a},\mathrm{0},\mathrm{2}{p}\right)\:;\:{B}\left({a},\mathrm{2}{a},\mathrm{0}\right);\:{G}\left(\mathrm{0},\mathrm{2}{a},{p}\right); \\ $$$${F}\left(\mathrm{0},\mathrm{0},\mathrm{3}{p}\right). \\ $$$${BG}×{BE}\:=\:\left(−{ai}+{pk}\right)×\left(−\mathrm{2}{aj}+\mathrm{2}{pk}\right) \\ $$$$\:\Rightarrow\:\:\bar {{n}}\:=\:\mathrm{2}{a}^{\mathrm{2}} {k}+\mathrm{2}{apj}+\mathrm{2}{api} \\ $$$${eq}.\:{of}\:{ceiling}\:{plane}\:{is} \\ $$$$\:\:\:\left(\bar {{r}}−\mathrm{3}{pk}\right).\bar {{n}}=\mathrm{0} \\ $$$$\Rightarrow\:\:\left(\bar {{r}}−\mathrm{3}{p}\hat {{k}}\right).\left({p}\hat {{i}}+{p}\hat {{j}}+{a}\hat {{k}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\bar {{r}}.\left({p}\hat {{i}}+{p}\hat {{j}}+{a}\hat {{k}}\right)=\mathrm{3}{ap} \\ $$$${center}\:{of}\:{sphere}:\:{G}\left({r},{r},{r}\right) \\ $$$$\Rightarrow\:\left[{r}\left({i}+{j}+{k}\right)+\frac{{r}\bar {{n}}}{\mid\bar {{n}}\mid}\right].\left({pi}+{pj}+{ak}\right)=\mathrm{3}{ap} \\ $$$$\Rightarrow\:{r}\:=\:\frac{\mathrm{3}{ap}}{\mathrm{2}{p}+{a}+\sqrt{\mathrm{2}{p}^{\mathrm{2}} +{a}^{\mathrm{2}} }}\:. \\ $$

Commented by mr W last updated on 22/Jan/19

best way in this case!

$${best}\:{way}\:{in}\:{this}\:{case}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com