All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53463 by maxmathsup by imad last updated on 22/Jan/19
1)let0<θ<π2andA(θ)=∫0π2dxx2+2sinθx+1 calculateA(θ) 2)calculate∫0π2dxx2+2x+1
Commented bymaxmathsup by imad last updated on 23/Jan/19
1)wehaveA(θ)=∫0π2dxx2+2xsinθ+sin2θ+cos2θ =∫0π2dx(x+sinθ)2+cos2θchangementx+sinθ=tcosθgivet=x+sinθcosθ A(θ)=∫tanθπ2cosθ+tanθcosθdtcosθ1+t2=∫tanθπ2cosθ+tanθdt1+t2=[argsh(t)]tanθπ2cosθ+tanθ =ln(t+1+t2]tanθπ2cosθ+tanθ=ln(π2cosθ+tanθ+1+(π2cosθ+tanθ)2) −ln(tanθ+1+tan2θ) 2)∫0π2dxx2+2x+1=A(π4)=ln(π2cos(π4)+tan(π4)+1+(π2cos(π4)+tan(π4)2 −ln(tan(π4)+1+tan2(π4)) =ln(π2+1+1+(π2+1)2)−ln(1+2).
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
1)∫0π2dxx2+2xsinθ+1 ∫0π2dx(x+sinθ)2+cos2θ=∣ln{∣(x+sinθ)+(x+sinθ)2+cos2θ)∣0π2 =[ln{(π2+sinθ)+(π2+sinθ)2+cos2θ}−ln{(0+sinθ)+(0+sinθ)2+cos2θ} =ln{(π2+sinθ)+π24+πsinθ+1}−ln{sinθ+1} usingformula ∫dxx2+a2=ln(x+x2+a2) 2)putθ=π4foranswer... ln{(π4+12)+π24+π2+1}−ln{12+1} sirplscheck...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com