Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53463 by maxmathsup by imad last updated on 22/Jan/19

1)let 0<θ<(π/2)    and  A(θ) =∫_0 ^(π/2)   (dx/(√(x^2  +2sinθ x +1)))  calculate A(θ)  2) calculate ∫_0 ^(π/2)   (dx/(√(x^2  +(√2)x +1)))

1)let0<θ<π2andA(θ)=0π2dxx2+2sinθx+1 calculateA(θ) 2)calculate0π2dxx2+2x+1

Commented bymaxmathsup by imad last updated on 23/Jan/19

1) we have A(θ) =∫_0 ^(π/2)     (dx/(√(x^2  +2x sinθ +sin^2 θ +cos^2 θ)))  =∫_0 ^(π/2)    (dx/(√((x+sinθ)^(2 ) +cos^2 θ)))  changement x+sinθ=t cosθ give t =((x+sinθ)/(cosθ))  A(θ) = ∫_(tanθ) ^((π/(2cosθ))+tanθ)      ((cosθ dt)/(cosθ(√(1+t^2 )))) = ∫_(tanθ) ^((π/(2cosθ)) +tanθ)   (dt/(√(1+t^2 ))) =[argsh(t)]_(tanθ) ^((π/(2cosθ))+tanθ)   =ln(t+(√(1+t^2 ))]_(tanθ) ^((π/(2cosθ)) +tanθ)  = ln((π/(2cosθ)) +tanθ +(√(1+((π/(2cosθ))+tanθ)^2 )))  −ln(tanθ +(√(1+tan^2 θ)))  2) ∫_0 ^(π/2)    (dx/(√(x^2 +(√2)x +1))) =A((π/4)) =ln((π/(2 cos((π/4)))) +tan((π/4))+(√(1+((π/(2cos((π/4))))+tan((π/4))^2 ))  −ln(tan((π/4))+(√(1+tan^2 ((π/4)))))  =ln((π/(√2)) +1 +(√(1+((π/(√2))+1)^2 )))−ln(1+(√2)).

1)wehaveA(θ)=0π2dxx2+2xsinθ+sin2θ+cos2θ =0π2dx(x+sinθ)2+cos2θchangementx+sinθ=tcosθgivet=x+sinθcosθ A(θ)=tanθπ2cosθ+tanθcosθdtcosθ1+t2=tanθπ2cosθ+tanθdt1+t2=[argsh(t)]tanθπ2cosθ+tanθ =ln(t+1+t2]tanθπ2cosθ+tanθ=ln(π2cosθ+tanθ+1+(π2cosθ+tanθ)2) ln(tanθ+1+tan2θ) 2)0π2dxx2+2x+1=A(π4)=ln(π2cos(π4)+tan(π4)+1+(π2cos(π4)+tan(π4)2 ln(tan(π4)+1+tan2(π4)) =ln(π2+1+1+(π2+1)2)ln(1+2).

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19

1)∫_0 ^(π/2) (dx/(√(x^2 +2xsinθ+1)))  ∫_0 ^(π/2) (dx/(√((x+sinθ)^2 +cos^2 θ)))=∣ln{∣(x+sinθ)+(√((x+sinθ)^2 +cos^2 θ)) )∣_0 ^(π/2)   =[ln{((π/2)+sinθ)+(√(((π/2)+sinθ)^2 +cos^2 θ)) }−ln{(0+sinθ)+(√((0+sinθ)^2 +cos^2 θ)) }  =ln{((π/2)+sinθ)+(√((π^2 /4)+πsinθ+1)) }−ln{sinθ+1}   using formula  ∫(dx/(√(x^2 +a^2 )))=ln(x+(√(x^2 +a^2 )) )  2)put θ=(π/4) for answer...  ln{((π/4)+(1/(√2)))+(√((π^2 /4)+(π/(√2))+1)) }−ln{(1/(√2))+1}  sir pls check...

1)0π2dxx2+2xsinθ+1 0π2dx(x+sinθ)2+cos2θ=∣ln{(x+sinθ)+(x+sinθ)2+cos2θ)0π2 =[ln{(π2+sinθ)+(π2+sinθ)2+cos2θ}ln{(0+sinθ)+(0+sinθ)2+cos2θ} =ln{(π2+sinθ)+π24+πsinθ+1}ln{sinθ+1} usingformula dxx2+a2=ln(x+x2+a2) 2)putθ=π4foranswer... ln{(π4+12)+π24+π2+1}ln{12+1} sirplscheck...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com