All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53464 by maxmathsup by imad last updated on 22/Jan/19
letUn=(∫0ne−x2dx)2∫0ne−nx2dx1)calculatelimn→+∞Un2)determnenatureofΣUnandΣUn3.
Commented by maxmathsup by imad last updated on 24/Jan/19
wehave∫0ne−nx2dx=nx=t∫0nne−t2dtn=1n∫0nne−t2dt⇒Un=n(∫0ne−x2dx)2∫0nne−t2dtbutlimn→+∞n=+∞limn→+∞(∫0ne−x2dx)2∫0nne−t2dt=(π2)2π2=π2⇒limn→+∞Un=+∞2)wehaveUn∼πn2⇒ΣUndivergesalsoΣUn3diverges.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
I1=∫0∞e−x2dxandI2=∫0∞e−nx2dxcalculatingI2∫0∞e−nx2dxt=nx2x=tndxdt=1n×12×t12−1=12n×t−12∫0∞e−t×12n×t−12dt=12n∫0∞e−t×t12−1dt=12n×⌈(12)=12n×π=12×πn→valueofI2I1=12×πlimn→∞Un=I12I2=π412×πn=π×2×n4×π=nπ2sirplsche4k...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com