Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53465 by maxmathsup by imad last updated on 22/Jan/19

find ∫_(−(π/2)) ^(π/2) (√(cosx −cos^3 x))dx

findπ2π2cosxcos3xdx

Commented by maxmathsup by imad last updated on 23/Jan/19

let I =∫_(−(π/2)) ^(π/2) (√(cosx −cos^3 ))dx ⇒I =∫_(−(π/2)) ^(π/2)  (√(cosx))(√(1−cos^2 x))dx  =∫_(−(π/2)) ^(π/2)  (√(cosx))∣sinx∣dx =2 ∫_0 ^(π/2)  (√(cosx))sinxdx  =−2 ∫_0 ^(π/2)   (cosx)^(1/2)   (d(cosx))dx  =−2 [(1/(1+(1/2))) cos^(1+(1/2)) x]_0 ^(π/2) =−2.(2/3)[cos^(3/2) x]_0 ^(π/2) =−(4/3)(−1) =(4/3)

letI=π2π2cosxcos3dxI=π2π2cosx1cos2xdx=π2π2cosxsinxdx=20π2cosxsinxdx=20π2(cosx)12(d(cosx))dx=2[11+12cos1+12x]0π2=2.23[cos32x]0π2=43(1)=43

Answered by ajfour last updated on 22/Jan/19

∫_(−π/2) ^(  π/2) (√(cos x))∣sin x∣dx  = −2∫_0 ^(  π/2) (√(cos x))(sin x)dx  = −2∫_1 ^(  0) (√t)dt = (4/3) .

π/2π/2cosxsinxdx=20π/2cosx(sinx)dx=210tdt=43.

Commented by malwaan last updated on 23/Jan/19

t=cosx  ⇒dt=−sinxdx  where is (−) ?

t=cosxdt=sinxdxwhereis()?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com