Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53470 by maxmathsup by imad last updated on 22/Jan/19

find  Vn=∫_(1/n) ^((an−1)/n)  ((√x)/(√(a−(√x)+x)))dx

$${find}\:\:{Vn}=\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{{an}−\mathrm{1}}{{n}}} \:\frac{\sqrt{{x}}}{\sqrt{{a}−\sqrt{{x}}+{x}}}{dx} \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 24/Jan/19

changement (√x)=t give x=t^2  ⇒dx =2tdt and  V_n = ∫_(1/(√n)) ^(√((an−1)/n))   (t/(√(a−t+t^2 ))) (2t)dt =2 ∫_(1/(√n)) ^(√((an−1)/n))    (t^2 /(√(t^2 −2(1/2)t +(1/4)+a−(1/4))))dt  =2 ∫_(1/(√n)) ^(√((an−1)/n))   (t^2 /(√((t−(1/2))^2  +((4a−1)/4))))   let suppose a>(1/4) ⇒  V_n =_(t−(1/2)=((√(4a−1))/2)u)       2∫_(((2/(√n))−1)/(√(4a−1))) ^((2(√((an−1)/n))−1)/(√(4a−1)))    (((((√(4a−1))/2)u+(1/2))^2 )/(((√(4a−1))/2)(√(1+u^2 )))) ((√(4a−1))/2) du  = 2 ∫_((2−(√n))/((√n)(√(4a−1)))) ^((2((√(4a−1))−(√n))/((√n)(√(4a−1))))    (1/4) (((4a−1)u^2  +2(√(4a−1))u +1)/(√(1+u^2 ))) du  =(1/2) ∫_α_n  ^β_n     (((4a−1)u^2  +2(√(4a−1))u +1)/(√(1+u^2 ))) du  =((4a−1)/2) ∫_α_n  ^β_n     ((u^2  +1 −1)/(√(1+u^2 ))) + (√(4a−1))∫_α_n  ^β_n    (u/(√(1+u^2 ))) du  +(1/2) ∫_α_n  ^β_n    (du/(√(1+u^2 )))  ∫_α_n  ^β_n    (du/(√(1+u^2 ))) =[ln(1+(√(1+x^2 ]_α_n  ^β_n  ))=ln(1+(√(1+β_n ^2 )))−ln(1+(√(1+α_n ^2 )))  ∫_α_n  ^β_n     (u/(√(1+u^2 ))) du =[(√(1+u^2 ))]_α_n  ^β_n   =(√(1+β_n ^2 ))−(√(1+α_n ^2 ))  ∫_α_n  ^β_n     ((u^2  +1−1)/(√(1+u^2 ))) du =∫_α_n  ^β_n  (√(1+u^2 ))du −∫_α_n  ^β_n    (du/(√(1+u^2 ))) =.....

$${changement}\:\sqrt{{x}}={t}\:{give}\:{x}={t}^{\mathrm{2}} \:\Rightarrow{dx}\:=\mathrm{2}{tdt}\:{and} \\ $$$${V}_{{n}} =\:\int_{\frac{\mathrm{1}}{\sqrt{{n}}}} ^{\sqrt{\frac{{an}−\mathrm{1}}{{n}}}} \:\:\frac{{t}}{\sqrt{{a}−{t}+{t}^{\mathrm{2}} }}\:\left(\mathrm{2}{t}\right){dt}\:=\mathrm{2}\:\int_{\frac{\mathrm{1}}{\sqrt{{n}}}} ^{\sqrt{\frac{{an}−\mathrm{1}}{{n}}}} \:\:\:\frac{{t}^{\mathrm{2}} }{\sqrt{{t}^{\mathrm{2}} −\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}{t}\:+\frac{\mathrm{1}}{\mathrm{4}}+{a}−\frac{\mathrm{1}}{\mathrm{4}}}}{dt} \\ $$$$=\mathrm{2}\:\int_{\frac{\mathrm{1}}{\sqrt{{n}}}} ^{\sqrt{\frac{{an}−\mathrm{1}}{{n}}}} \:\:\frac{{t}^{\mathrm{2}} }{\sqrt{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{4}{a}−\mathrm{1}}{\mathrm{4}}}}\:\:\:{let}\:{suppose}\:{a}>\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow \\ $$$${V}_{{n}} =_{{t}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{4}{a}−\mathrm{1}}}{\mathrm{2}}{u}} \:\:\:\:\:\:\mathrm{2}\int_{\frac{\frac{\mathrm{2}}{\sqrt{{n}}}−\mathrm{1}}{\sqrt{\mathrm{4}{a}−\mathrm{1}}}} ^{\frac{\mathrm{2}\sqrt{\frac{{an}−\mathrm{1}}{{n}}}−\mathrm{1}}{\sqrt{\mathrm{4}{a}−\mathrm{1}}}} \:\:\:\frac{\left(\frac{\sqrt{\mathrm{4}{a}−\mathrm{1}}}{\mathrm{2}}{u}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{\frac{\sqrt{\mathrm{4}{a}−\mathrm{1}}}{\mathrm{2}}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\sqrt{\mathrm{4}{a}−\mathrm{1}}}{\mathrm{2}}\:{du} \\ $$$$=\:\mathrm{2}\:\int_{\frac{\mathrm{2}−\sqrt{{n}}}{\sqrt{{n}}\sqrt{\mathrm{4}{a}−\mathrm{1}}}} ^{\frac{\mathrm{2}\left(\sqrt{\mathrm{4}{a}−\mathrm{1}}−\sqrt{{n}}\right.}{\sqrt{{n}}\sqrt{\mathrm{4}{a}−\mathrm{1}}}} \:\:\:\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\left(\mathrm{4}{a}−\mathrm{1}\right){u}^{\mathrm{2}} \:+\mathrm{2}\sqrt{\mathrm{4}{a}−\mathrm{1}}{u}\:+\mathrm{1}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\:\frac{\left(\mathrm{4}{a}−\mathrm{1}\right){u}^{\mathrm{2}} \:+\mathrm{2}\sqrt{\mathrm{4}{a}−\mathrm{1}}{u}\:+\mathrm{1}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{du} \\ $$$$=\frac{\mathrm{4}{a}−\mathrm{1}}{\mathrm{2}}\:\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\:\frac{{u}^{\mathrm{2}} \:+\mathrm{1}\:−\mathrm{1}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:+\:\sqrt{\mathrm{4}{a}−\mathrm{1}}\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\frac{{u}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{du}\:\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\frac{{du}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }} \\ $$$$\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\frac{{du}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\left[{ln}\left(\mathrm{1}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right]_{\alpha_{{n}} } ^{\beta_{{n}} } }={ln}\left(\mathrm{1}+\sqrt{\mathrm{1}+\beta_{{n}} ^{\mathrm{2}} }\right)−{ln}\left(\mathrm{1}+\sqrt{\mathrm{1}+\alpha_{{n}} ^{\mathrm{2}} }\right)\right.\right. \\ $$$$\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\:\frac{{u}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{du}\:=\left[\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right]_{\alpha_{{n}} } ^{\beta_{{n}} } \:=\sqrt{\mathrm{1}+\beta_{{n}} ^{\mathrm{2}} }−\sqrt{\mathrm{1}+\alpha_{{n}} ^{\mathrm{2}} } \\ $$$$\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\:\frac{{u}^{\mathrm{2}} \:+\mathrm{1}−\mathrm{1}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:{du}\:=\int_{\alpha_{{n}} } ^{\beta_{{n}} } \sqrt{\mathrm{1}+{u}^{\mathrm{2}} }{du}\:−\int_{\alpha_{{n}} } ^{\beta_{{n}} } \:\:\frac{{du}}{\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:=..... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com