Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 5357 by Junaid Mirza last updated on 11/May/16

Commented by Yozzii last updated on 11/May/16

Let the lowest position of the bob be  that where its gravitational potential  energy is zero. Then, by the law of  conservation of energy for the bob,                        ΔK.E=ΔP.E.  ΔK.E=(m/2)(v^2 −u^2 ) and ΔP.E=mgl(cosα−cosθ)  where θ= initial angular displacement of the  pendulum from the centre position,  α=final angular displacement from centre position  u=initial speed, v=final speed, m=mass of bob  g=acceleration due to gravity, l=length of pendulum.    ∴ (m/2)(v^2 −u^2 )=mgl(cosα−cosθ)  m>0⇒v^2 =u^2 +2gl(cosα−cosθ)  ⇒v=(√(u^2 +2gl(cosα−cosθ)))  Initially, u=0, θ=60°. l=2 , g≈9.8ms^(−2) .  α=0° at centre position.  ∴v≈(√(0+2×2×9.8(1−(1/2))))  v≈(√(19.6)) ms^(−1) ≈4.43 ms^(−1)

$${Let}\:{the}\:{lowest}\:{position}\:{of}\:{the}\:{bob}\:{be} \\ $$$${that}\:{where}\:{its}\:{gravitational}\:{potential} \\ $$$${energy}\:{is}\:{zero}.\:{Then},\:{by}\:{the}\:{law}\:{of} \\ $$$${conservation}\:{of}\:{energy}\:{for}\:{the}\:{bob}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Delta{K}.{E}=\Delta{P}.{E}. \\ $$$$\Delta{K}.{E}=\frac{{m}}{\mathrm{2}}\left({v}^{\mathrm{2}} −{u}^{\mathrm{2}} \right)\:{and}\:\Delta{P}.{E}={mgl}\left({cos}\alpha−{cos}\theta\right) \\ $$$${where}\:\theta=\:{initial}\:{angular}\:{displacement}\:{of}\:{the} \\ $$$${pendulum}\:{from}\:{the}\:{centre}\:{position}, \\ $$$$\alpha={final}\:{angular}\:{displacement}\:{from}\:{centre}\:{position} \\ $$$${u}={initial}\:{speed},\:{v}={final}\:{speed},\:{m}={mass}\:{of}\:{bob} \\ $$$${g}={acceleration}\:{due}\:{to}\:{gravity},\:{l}={length}\:{of}\:{pendulum}. \\ $$$$ \\ $$$$\therefore\:\frac{{m}}{\mathrm{2}}\left({v}^{\mathrm{2}} −{u}^{\mathrm{2}} \right)={mgl}\left({cos}\alpha−{cos}\theta\right) \\ $$$${m}>\mathrm{0}\Rightarrow{v}^{\mathrm{2}} ={u}^{\mathrm{2}} +\mathrm{2}{gl}\left({cos}\alpha−{cos}\theta\right) \\ $$$$\Rightarrow{v}=\sqrt{{u}^{\mathrm{2}} +\mathrm{2}{gl}\left({cos}\alpha−{cos}\theta\right)} \\ $$$${Initially},\:{u}=\mathrm{0},\:\theta=\mathrm{60}°.\:{l}=\mathrm{2}\:,\:{g}\approx\mathrm{9}.\mathrm{8}{ms}^{−\mathrm{2}} . \\ $$$$\alpha=\mathrm{0}°\:{at}\:{centre}\:{position}. \\ $$$$\therefore{v}\approx\sqrt{\mathrm{0}+\mathrm{2}×\mathrm{2}×\mathrm{9}.\mathrm{8}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${v}\approx\sqrt{\mathrm{19}.\mathrm{6}}\:{ms}^{−\mathrm{1}} \approx\mathrm{4}.\mathrm{43}\:{ms}^{−\mathrm{1}} \\ $$

Commented by Junaid Mirza last updated on 12/May/16

Thanks you are correct

$$\mathrm{Thanks}\:\mathrm{you}\:\mathrm{are}\:\mathrm{correct} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com