Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 53593 by ajfour last updated on 23/Jan/19

Commented by ajfour last updated on 23/Jan/19

Having removed the largest cube  from a hemisphere, it can rest in  equilibrium on a rough incline  plane of inclination α, in the  manner shown. Find θ.   (source: Statics & Dynamics       by S.L. Loney)  Answer given:  θ=sin^(−1) [((8(3π−(√6)))/(9π−8))sin α].

$${Having}\:{removed}\:{the}\:{largest}\:{cube} \\ $$$${from}\:{a}\:{hemisphere},\:{it}\:{can}\:{rest}\:{in} \\ $$$${equilibrium}\:{on}\:{a}\:{rough}\:{incline} \\ $$$${plane}\:{of}\:{inclination}\:\alpha,\:{in}\:{the} \\ $$$${manner}\:{shown}.\:{Find}\:\theta. \\ $$$$\:\left({source}:\:{Statics}\:\&\:{Dynamics}\right. \\ $$$$\left.\:\:\:\:\:{by}\:{S}.{L}.\:{Loney}\right) \\ $$$${Answer}\:{given}:\:\:\theta=\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{8}\left(\mathrm{3}\pi−\sqrt{\mathrm{6}}\right)}{\mathrm{9}\pi−\mathrm{8}}\mathrm{sin}\:\alpha\right]. \\ $$

Answered by mr W last updated on 23/Jan/19

Commented by mr W last updated on 23/Jan/19

R=radius of sphere  a^2 +a^2 +(2a)^2 =R^2   ⇒a=(R/(√6))  M=mass of hemisphere  m=mass of cube  M=((2πR^3 ρ)/3)  m=8a^3 ρ=((4R^3 ρ)/(3(√6)))=((2M)/(π(√6)))  center of mass of hemisphere:  b=((3R)/8)    center of mass of hemisphere with hole:  c=((Mb−ma)/(M−m))=((((M3R)/8)−((2M)/(π(√6)))×(R/(√6)))/(M−((2M)/(π(√6)))))=((R(9π−8))/(8(3π−(√6))))  (c/(sin α))=(R/(sin (π−θ)))  ⇒sin θ=(R/c) sin α=((8(3π−(√6)))/(9π−8))×sin α  ⇒θ=sin^(−1) [((8(3π−(√6)))/(9π−8))×sin α]

$${R}={radius}\:{of}\:{sphere} \\ $$$${a}^{\mathrm{2}} +{a}^{\mathrm{2}} +\left(\mathrm{2}{a}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow{a}=\frac{{R}}{\sqrt{\mathrm{6}}} \\ $$$${M}={mass}\:{of}\:{hemisphere} \\ $$$${m}={mass}\:{of}\:{cube} \\ $$$${M}=\frac{\mathrm{2}\pi{R}^{\mathrm{3}} \rho}{\mathrm{3}} \\ $$$${m}=\mathrm{8}{a}^{\mathrm{3}} \rho=\frac{\mathrm{4}{R}^{\mathrm{3}} \rho}{\mathrm{3}\sqrt{\mathrm{6}}}=\frac{\mathrm{2}{M}}{\pi\sqrt{\mathrm{6}}} \\ $$$${center}\:{of}\:{mass}\:{of}\:{hemisphere}: \\ $$$${b}=\frac{\mathrm{3}{R}}{\mathrm{8}} \\ $$$$ \\ $$$${center}\:{of}\:{mass}\:{of}\:{hemisphere}\:{with}\:{hole}: \\ $$$${c}=\frac{{Mb}−{ma}}{{M}−{m}}=\frac{\frac{{M}\mathrm{3}{R}}{\mathrm{8}}−\frac{\mathrm{2}{M}}{\pi\sqrt{\mathrm{6}}}×\frac{{R}}{\sqrt{\mathrm{6}}}}{{M}−\frac{\mathrm{2}{M}}{\pi\sqrt{\mathrm{6}}}}=\frac{{R}\left(\mathrm{9}\pi−\mathrm{8}\right)}{\mathrm{8}\left(\mathrm{3}\pi−\sqrt{\mathrm{6}}\right)} \\ $$$$\frac{{c}}{\mathrm{sin}\:\alpha}=\frac{{R}}{\mathrm{sin}\:\left(\pi−\theta\right)} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{{R}}{{c}}\:\mathrm{sin}\:\alpha=\frac{\mathrm{8}\left(\mathrm{3}\pi−\sqrt{\mathrm{6}}\right)}{\mathrm{9}\pi−\mathrm{8}}×\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{8}\left(\mathrm{3}\pi−\sqrt{\mathrm{6}}\right)}{\mathrm{9}\pi−\mathrm{8}}×\mathrm{sin}\:\alpha\right] \\ $$

Commented by ajfour last updated on 23/Jan/19

Wonderful question and your solution,  Sir !

$${Wonderful}\:{question}\:{and}\:{your}\:{solution}, \\ $$$${Sir}\:! \\ $$

Commented by mr W last updated on 23/Jan/19

thank you sir!  in my solution the side length of cube  is 2a, therefore i got a=(R/(√6)).

$${thank}\:{you}\:{sir}! \\ $$$${in}\:{my}\:{solution}\:{the}\:{side}\:{length}\:{of}\:{cube} \\ $$$${is}\:\mathrm{2}{a},\:{therefore}\:{i}\:{got}\:{a}=\frac{{R}}{\sqrt{\mathrm{6}}}. \\ $$

Commented by ajfour last updated on 23/Jan/19

thanks _∣ . ._( ∣) _(-_⌣ ) ^(⌢^⌢ ) ) Sir.

$$\left.{thanks}\:_{\mid} \underset{\underset{\smile} {-}} {\overset{\overset{\frown} {\frown}} {.\:._{\:\mid} }}\right)\:{Sir}. \\ $$

Answered by ajfour last updated on 23/Jan/19

Commented by mr W last updated on 23/Jan/19

nice diagram!  i didn′t make such a diagram, so i  made a mistake at first.

$${nice}\:{diagram}! \\ $$$${i}\:{didn}'{t}\:{make}\:{such}\:{a}\:{diagram},\:{so}\:{i} \\ $$$${made}\:{a}\:{mistake}\:{at}\:{first}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com