All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53599 by maxmathsup by imad last updated on 23/Jan/19
1)calculateAn=∫0∞xn−1ex+1dxwithnintegrnatural(n⩾2)2)findthevalueof∫0∞xex+1dx
Commented by maxmathsup by imad last updated on 24/Jan/19
1)wehaveAn=∫0∞xn−1e−x1+e−xdx=∫0∞xn−1e−x(∑p=0∞(−1)pe−px)dx=∑p=0∞(−1)p∫0∞xn−1e−(p+1)xdx=∑p=0∞(−1)pApAp=∫0∞xn−1e−(p+1)xdx=(p+1)x=t∫0∞(tp+1)n−1e−tdtp+1=1(p+1)n∫0∞tn−1e−tdt=Γ(n)(p+1)n⇒An=Γ(n)∑p=0∞(−1)p(p+1)n=Γ(n).∑p=1∞(−1)p−1pnletrememberξ(x)=∑p=1∞1pxwithx>1wehave∑p=1∞(−1)p−1pn=−∑k=1∞1(2k)n+∑k=0∞1(2k+1)n=−12nξ(n)+∑k=0∞1(2k+1)nbutξ(n)=∑p=1∞1pn=∑k=1n1(2k)n+∑k=0∞1(2k+1)n=12nξ(n)+∑k=0∞1(2k+1)n⇒∑k=0n1(2k+1)n=(1−2−n)ξ(n)⇒∑p=1∞(−1)p−1pn=−2−nξ(n)+(1−2−n)ξ(n)=(1−21−n)ξ(n)⇒An=(1−21−n)ξ(n)Γ(n)Γ(x)=∫0∞tx−1e−tdt⇒Γ(n)=∫0∞tn−1e−tdt=[1ntne−t]0+∞+∫0∞tnne−tdt=1nΓ(n+1)⇒Γ(n+1)=nΓ(n)⇒Γ(n+1)=n!⇒An=(1−21−n)ξ(n)(n−1)!2)weseethat∫0∞xex+1dx=A2=(1−12)ξ(2)=12.π26=π212.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com