Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53599 by maxmathsup by imad last updated on 23/Jan/19

1) calculate A_n =∫_0 ^∞    (x^(n−1) /(e^x  +1)) dx   with n integr natural  (n≥2)  2) find the value of ∫_0 ^∞     (x/(e^x  +1))dx

1)calculateAn=0xn1ex+1dxwithnintegrnatural(n2)2)findthevalueof0xex+1dx

Commented by maxmathsup by imad last updated on 24/Jan/19

1) we have A_n =∫_0 ^∞   ((x^(n−1)  e^(−x) )/(1+e^(−x) ))dx =∫_0 ^∞  x^(n−1) e^(−x) (Σ_(p=0) ^∞  (−1)^p e^(−px) )dx  =Σ_(p=0) ^∞  (−1)^p  ∫_0 ^∞  x^(n−1)  e^(−(p+1)x) dx =Σ_(p=0) ^∞  (−1)^p  A_p   A_p =∫_0 ^∞  x^(n−1)  e^(−(p+1)x) dx =_((p+1)x=t)      ∫_0 ^∞   ((t/(p+1)))^(n−1)  e^(−t)  (dt/(p+1))  =(1/((p+1)^n )) ∫_0 ^∞  t^(n−1)  e^(−t) dt =((Γ(n))/((p+1)^n )) ⇒ A_n =Γ(n) Σ_(p=0) ^∞  (((−1)^p )/((p+1)^n ))  =Γ(n).Σ_(p=1) ^∞  (((−1)^(p−1) )/p^n )   let remember ξ(x)=Σ_(p=1) ^∞  (1/p^x )  with x>1  we have Σ_(p=1) ^∞  (((−1)^(p−1) )/p^n ) =−Σ_(k=1) ^∞   (1/((2k)^n )) +Σ_(k=0) ^∞  (1/((2k+1)^n ))  =−(1/2^n ) ξ(n) +Σ_(k=0) ^∞   (1/((2k+1)^n )) but  ξ(n) =Σ_(p=1) ^∞   (1/p^n ) =Σ_(k=1) ^n  (1/((2k)^n )) +Σ_(k=0) ^∞   (1/((2k+1)^n )) =(1/2^n )ξ(n)+Σ_(k=0) ^∞  (1/((2k+1)^n )) ⇒  Σ_(k=0) ^n  (1/((2k+1)^n )) =(1−2^(−n) )ξ(n) ⇒Σ_(p=1) ^∞  (((−1)^(p−1) )/p^n ) =−2^(−n) ξ(n) +(1−2^(−n) )ξ(n)  =(1−2^(1−n) )ξ(n) ⇒ A_n =(1−2^(1−n) )ξ(n)Γ(n)  Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt ⇒Γ(n) =∫_0 ^∞  t^(n−1)  e^(−t)  dt =[(1/n)t^n  e^(−t) ]_0 ^(+∞) +∫_0 ^∞  (t^n /n) e^(−t) dt  =(1/n)Γ(n+1) ⇒Γ(n+1)=nΓ(n) ⇒Γ(n+1)=n! ⇒  A_n =(1−2^(1−n) )ξ(n)(n−1)!  2) we see that  ∫_0 ^∞    (x/(e^x +1)) dx =A_2 =(1−(1/2))ξ(2) =(1/2).(π^2 /6) =(π^2 /(12)) .

1)wehaveAn=0xn1ex1+exdx=0xn1ex(p=0(1)pepx)dx=p=0(1)p0xn1e(p+1)xdx=p=0(1)pApAp=0xn1e(p+1)xdx=(p+1)x=t0(tp+1)n1etdtp+1=1(p+1)n0tn1etdt=Γ(n)(p+1)nAn=Γ(n)p=0(1)p(p+1)n=Γ(n).p=1(1)p1pnletrememberξ(x)=p=11pxwithx>1wehavep=1(1)p1pn=k=11(2k)n+k=01(2k+1)n=12nξ(n)+k=01(2k+1)nbutξ(n)=p=11pn=k=1n1(2k)n+k=01(2k+1)n=12nξ(n)+k=01(2k+1)nk=0n1(2k+1)n=(12n)ξ(n)p=1(1)p1pn=2nξ(n)+(12n)ξ(n)=(121n)ξ(n)An=(121n)ξ(n)Γ(n)Γ(x)=0tx1etdtΓ(n)=0tn1etdt=[1ntnet]0++0tnnetdt=1nΓ(n+1)Γ(n+1)=nΓ(n)Γ(n+1)=n!An=(121n)ξ(n)(n1)!2)weseethat0xex+1dx=A2=(112)ξ(2)=12.π26=π212.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com