Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53600 by maxmathsup by imad last updated on 23/Jan/19

calculate A_m =∫_0 ^∞    ((sin(mx))/(e^(2πx) −1)) dx  with m>0

$${calculate}\:{A}_{{m}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({mx}\right)}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}\:{dx}\:\:{with}\:{m}>\mathrm{0} \\ $$

Commented bymaxmathsup by imad last updated on 24/Jan/19

we have A_m =∫_0 ^∞   ((e^(−2πx)  sin(mx))/(1−e^(−2πx) )) dx =Im(∫_0 ^∞   ((e^(−2πx) e^(imx) )/(1−e^(−2πx) ))dx) but  ∫_0 ^∞    (e^(−(2π−im)x) /(1−e^(−2πx) ))dx =∫_0 ^∞  e^(−(2π−im)x) (Σ_(p=0) ^∞  e^(−2πp x) )  =Σ_(p=0) ^∞  ∫_0 ^∞ e^(−(2π−im+2pπ)x) dx =Σ_(p=0) ^∞  [−(1/(2π−im+2pπ)) e^(−(2π−im+2pπ)x) ]^(+∞) _0   =Σ_(p=0) ^∞    (1/((2+2p)π −im)) =Σ_(p=0) ^∞   (((2+2p)π+im)/((2+2p)^2 π^2  +m^2 )) ⇒  A_m =Σ_(p=0) ^∞     (m/(4(p+1)^2 π^2  +m^2 ))   and A_m  can be calculated by fourier series  ....be continued...

$${we}\:{have}\:{A}_{{m}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}\pi{x}} \:{sin}\left({mx}\right)}{\mathrm{1}−{e}^{−\mathrm{2}\pi{x}} }\:{dx}\:={Im}\left(\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{2}\pi{x}} {e}^{{imx}} }{\mathrm{1}−{e}^{−\mathrm{2}\pi{x}} }{dx}\right)\:{but} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\left(\mathrm{2}\pi−{im}\right){x}} }{\mathrm{1}−{e}^{−\mathrm{2}\pi{x}} }{dx}\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{2}\pi−{im}\right){x}} \left(\sum_{{p}=\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}\pi{p}\:{x}} \right) \\ $$ $$=\sum_{{p}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{2}\pi−{im}+\mathrm{2}{p}\pi\right){x}} {dx}\:=\sum_{{p}=\mathrm{0}} ^{\infty} \:\left[−\frac{\mathrm{1}}{\mathrm{2}\pi−{im}+\mathrm{2}{p}\pi}\:{e}^{−\left(\mathrm{2}\pi−{im}+\mathrm{2}{p}\pi\right){x}} \underset{\mathrm{0}} {\right]}^{+\infty} \\ $$ $$=\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}+\mathrm{2}{p}\right)\pi\:−{im}}\:=\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{2}+\mathrm{2}{p}\right)\pi+{im}}{\left(\mathrm{2}+\mathrm{2}{p}\right)^{\mathrm{2}} \pi^{\mathrm{2}} \:+{m}^{\mathrm{2}} }\:\Rightarrow \\ $$ $${A}_{{m}} =\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{m}}{\mathrm{4}\left({p}+\mathrm{1}\right)^{\mathrm{2}} \pi^{\mathrm{2}} \:+{m}^{\mathrm{2}} }\:\:\:{and}\:{A}_{{m}} \:{can}\:{be}\:{calculated}\:{by}\:{fourier}\:{series} \\ $$ $$....{be}\:{continued}... \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com