Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 53620 by kaivan.ahmadi last updated on 23/Jan/19

Σ_(n=0) ^∞    (((−1)^n )/(2n+1)) =?    1. (π/4)        2. (π^2 /(12))     3. (π/8)     4. (π^2 /6)

$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\:=? \\ $$$$ \\ $$$$\mathrm{1}.\:\frac{\pi}{\mathrm{4}}\:\:\:\:\:\:\:\:\mathrm{2}.\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\:\:\:\:\mathrm{3}.\:\frac{\pi}{\mathrm{8}}\:\:\:\:\:\mathrm{4}.\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by turbo msup by abdo last updated on 24/Jan/19

1)(π/4)  if you want method see the  platform.

$$\left.\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\:\:{if}\:{you}\:{want}\:{method}\:{see}\:{the} \\ $$$${platform}. \\ $$

Commented by kaivan.ahmadi last updated on 24/Jan/19

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by turbo msup by abdo last updated on 24/Jan/19

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Commented by maxmathsup by imad last updated on 26/Jan/19

let S(x) =Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) x^(2n+1)    with ∣x∣<1  due to uniform convergence we have  (d/dx)S(x) =Σ_(n=0) ^∞  (−1)^n  x^(2n)  =Σ_(n=0) ^∞  (−x^2 )^n  =(1/(1+x^2 )) ⇒  S(x) =∫_0 ^x  (dt/(1+t^2 ))  +c =arctan(x)+c   c =S(o) =0 ⇒S(x) =arctanx and Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) =S(1) =arctan(1)=(π/4) .

$${let}\:{S}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:\:\:{with}\:\mid{x}\mid<\mathrm{1}\:\:{due}\:{to}\:{uniform}\:{convergence}\:{we}\:{have} \\ $$$$\frac{{d}}{{dx}}{S}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−{x}^{\mathrm{2}} \right)^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${S}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:+{c}\:={arctan}\left({x}\right)+{c}\: \\ $$$${c}\:={S}\left({o}\right)\:=\mathrm{0}\:\Rightarrow{S}\left({x}\right)\:={arctanx}\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:={S}\left(\mathrm{1}\right)\:={arctan}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19

S_n =(1/1)−(1/3)+(1/5)−(1/7)+...∞  Gregory series  tan^(−1) x=∫(dx/(1+x^2 ))  tan^(−1) x=∫(1−x^2 +x^4 −x^6 +...)dx                 =x−(x^3 /3)+(x^5 /5)−(x^7 /7)+...  put x=1 both side  tan^(−1) (1)=1−(1/3)+(1/5)−(1/7)+...  So S_n =tan^(−1) (1)=(π/4)

$${S}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+...\infty \\ $$$${Gregory}\:{series} \\ $$$${tan}^{−\mathrm{1}} {x}=\int\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${tan}^{−\mathrm{1}} {x}=\int\left(\mathrm{1}−{x}^{\mathrm{2}} +{x}^{\mathrm{4}} −{x}^{\mathrm{6}} +...\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}}+... \\ $$$${put}\:{x}=\mathrm{1}\:{both}\:{side} \\ $$$${tan}^{−\mathrm{1}} \left(\mathrm{1}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+... \\ $$$${So}\:{S}_{{n}} ={tan}^{−\mathrm{1}} \left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19

Commented by turbo msup by abdo last updated on 24/Jan/19

thank you sir for this formulas

$${thank}\:{you}\:{sir}\:{for}\:{this}\:{formulas} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 24/Jan/19

most welcome sir...i have just shared the information

$${most}\:{welcome}\:{sir}...{i}\:{have}\:{just}\:{shared}\:{the}\:{information} \\ $$

Commented by kaivan.ahmadi last updated on 24/Jan/19

thank you sir^

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{si}\overset{} {\mathrm{r}} \\ $$

Commented by Meritguide1234 last updated on 25/Jan/19

which book is t!<

$$\mathrm{which}\:\mathrm{book}\:\mathrm{is}\:\mathrm{t}!< \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com