Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53623 by turbo msup by abdo last updated on 24/Jan/19

1) study the function  f(x)=ln(x+1−(√x))  2) determine f^(−1) (x)  3) cslculate  ∫ f(x)dx snd  ∫ f^(−1) (x)dx  4) dtermine ∫ f^(−1) (x^2  +f(x))dx

1)studythefunctionf(x)=ln(x+1x)2)determinef1(x)3)cslculatef(x)dxsndf1(x)dx4)dterminef1(x2+f(x))dx

Commented by Abdo msup. last updated on 25/Jan/19

1) x∈D_f  ⇔x+1−(√x)>0 ⇔t^2  +1−t>0(t=(√x))  t^2  −t +1>0 →Δ=1−4=−3<0   a=1>0 ⇒  t^2 −t +1 >0 ∀t ⇒ D_f =[0,+∞[  we have f(x)=ln(x)+ln(1+(1/x)−(1/(√x))) ⇒  lim_(x→+∞) f(x)=lim_(x→+∞) ln(x)=+∞  lim_(x→+∞)  ((f(x))/x) =lim_(x→+∞)   ((ln(x))/x) =0 so the graph  have a parabol branch in (oy) direction  derivative f^′ (x)= (((x+1−(√x))^, )/(x+1−(√x)))  =((1−(1/(2(√x))))/(x+1−(√x))) =((2(√x)−1)/(2(√x)(x+1−(√x))))  f^′ (x)=0 ⇔2(√x)−1=0 ⇔(√x)=(1/2) ⇔x=(1/4)  f^′ (x)≥0 ⇔x≥(1/4)  variations of f(x)  −−−−−−−−−−−−−−−−−  x          0                 (1/4)                +∞  f^, (x)             −      0        +  f(x)    0   decr.     f((1/4))    incr.  −−−−−−−−−−−−−−−−−−−  f((1/4))=ln((5/4) −(1/2)) =ln((3/4))=ln(3)−2ln(2)  intersection between graph and (ox)  f(x)=0 ⇔ln(x+1−(√x))=0 ⇔x+1−(√x)=1  x=(√x) ⇔x^2  =x ⇔ x=0 or x=1  the points are 0(0,0) and A(1,0)  rest drawing graph..be cintinued...

1)xDfx+1x>0t2+1t>0(t=x)t2t+1>0Δ=14=3<0a=1>0t2t+1>0tDf=[0,+[wehavef(x)=ln(x)+ln(1+1x1x)limx+f(x)=limx+ln(x)=+limx+f(x)x=limx+ln(x)x=0sothegraphhaveaparabolbranchin(oy)directionderivativef(x)=(x+1x),x+1x=112xx+1x=2x12x(x+1x)f(x)=02x1=0x=12x=14f(x)0x14variationsoff(x)x014+f,(x)0+f(x)0decr.f(14)incr.f(14)=ln(5412)=ln(34)=ln(3)2ln(2)intersectionbetweengraphand(ox)f(x)=0ln(x+1x)=0x+1x=1x=xx2=xx=0orx=1thepointsare0(0,0)andA(1,0)restdrawinggraph..becintinued...

Commented by Abdo msup. last updated on 25/Jan/19

2) f(x)=y ⇔x=f^(−1) (y)  with x≥0  f(x)=y ⇔ln(x+1−(√x))=y ⇔x+1−(√x)=e^y   ⇔  x+1−(√x)−e^y =0 ⇒t^2  +1−t−e^y =0 with t=(√x) ⇒  t^2 −t +1−e^y =0 →Δ=1−4(1−e^y )  =4e^y −3  f^(−1) exists ⇒Δ≥0 ⇒e^y ≥(3/4) ⇒y≥ln((3/4))  in this case t_1 =((1+(√(4e^y −3)))/2)  and t_2 =((1−(√(4e^y −3)))/2)  but t≥0 ⇒t=t_1 =(√(x ))⇒  x =t_1 ^2   =(1/4)(1+(√(4e^y −3)))^2  ⇒  f^(−1) (x) =(1/4)(1+(√(4e^x −3)))^2

2)f(x)=yx=f1(y)withx0f(x)=yln(x+1x)=yx+1x=eyx+1xey=0t2+1tey=0witht=xt2t+1ey=0Δ=14(1ey)=4ey3f1existsΔ0ey34yln(34)inthiscaset1=1+4ey32andt2=14ey32butt0t=t1=xx=t12=14(1+4ey3)2f1(x)=14(1+4ex3)2

Commented by Abdo msup. last updated on 25/Jan/19

3) let I =∫ f(x)dx ⇒I =∫ ln(x+1−(√x))dx  =_((√x)=t)  ∫ ln(t^2  +1−t)(2t)dt  =2 ∫  tln(t^2 −t+1)dt  by parts  ∫ t ln(t^2 −t +1)dt =(t^2 /2)ln(t^2 −t+1)−∫ (t^2 /2) ((2t−1)/(t^2 −t +1))dt  =(t^2 /2)ln(t^2 −t +1)−(1/2) ∫  ((2t^3 −t^2 )/(t^2 −t +1))dt  ∫  ((2t^3 −t^2 )/(t^2 −t +1)) dt =∫  ((2t(t^2 −t+1)+2t^2 −2t−t^2 )/(t^2 −t +1))dt  =∫ (2t)dt  +∫  ((t^2 −2t)/(t^2 −t +1))dt  =t^2  +∫  ((t^2 −t +1 −t−1)/(t^2 −t +1))dt  =t^2  +t −∫  ((t+1)/(t^2 −t +1))dt  ∫  ((t+1)/(t^2 −t +1))dt =(1/2) ∫ ((2t+2)/(t^2 −t +1))dt  =(1/2) ∫ ((2t−1 +3)/(t^2 −t +1))dt =(1/2)ln(t^2 −t +1+(3/2)∫ (dt/(t^2 −t +1))  =....be continued...

3)letI=f(x)dxI=ln(x+1x)dx=x=tln(t2+1t)(2t)dt=2tln(t2t+1)dtbypartstln(t2t+1)dt=t22ln(t2t+1)t222t1t2t+1dt=t22ln(t2t+1)122t3t2t2t+1dt2t3t2t2t+1dt=2t(t2t+1)+2t22tt2t2t+1dt=(2t)dt+t22tt2t+1dt=t2+t2t+1t1t2t+1dt=t2+tt+1t2t+1dtt+1t2t+1dt=122t+2t2t+1dt=122t1+3t2t+1dt=12ln(t2t+1+32dtt2t+1=....becontinued...

Answered by kaivan.ahmadi last updated on 24/Jan/19

first we find D_f   x+1−(√x) >0⇒x+1>(√x)⇒x^2 +2x+1>x⇒  x^2 +x+1>0  since x^2 +x+1=0 has no real root and  the coefficient of x^2  is positive, then x∈R  on the other hand D_(√x) ={x∈R∣x≥0}.    so D_f ={x∈R∣x≥0}  now we check 1−1  (1,0) , (0,0) ∈f so f is not 1−1   consequently f^(−1)  is not exist

firstwefindDfx+1x>0x+1>xx2+2x+1>xx2+x+1>0sincex2+x+1=0hasnorealrootandthecoefficientofx2ispositive,thenxRontheotherhandDx={xRx0}.soDf={xRx0}nowwecheck11(1,0),(0,0)fsofisnot11consequentlyf1isnotexist

Terms of Service

Privacy Policy

Contact: info@tinkutara.com