All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 53693 by gunawan last updated on 25/Jan/19
∫π/20x+sinx1+cosxdx=
Commented by maxmathsup by imad last updated on 25/Jan/19
letI=∫0π2x+sinx1+cosx⇒I=∫0π2x1+cosxdx+∫0π2sinx1+cosxdxbut∫0π2sinx1+cosxdx=−∫0π2(cosx),1+cosxdx=−[ln∣1+cosx∣]0π2=−(−ln(2))=ln(2)∫0π2x1+cosxdx=12∫0π2xcos2(x2)dx=12∫0π2x(1+tan2(x2)dxbut∫0π2x(1+tan2(x2))dx=x2=t∫0π4(2t)(1+tan2t)(2)dt=4∫0π4t(1+tan2t)dtbypartsu=tandv′=1+tan2t⇒∫0π4t(1+tan2t)dt=[ttant]0π4−∫0π4tantdt=π4+∫0π4−sintcostdt=π4+[ln∣cost∣]0π4=π4+ln(12)=π4−12ln(2)⇒∫0π2x(1+tan2(x2))dx=π−2ln(2)⇒I=ln(2)+12(π−2ln(2))⇒I=π2.
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
∫0π2x1+cosxdx−∫0π2d(1+cosx)1+cosx∫0π2x×12cos2x2−∫0π2d(1+cosx)1+cosxnow...∫xsec2x2dxx×tanx212−∫[dxdx∫sec2x2dx]dx=2xtanx2−∫tanx212dx=2xtanx2−2lnsecx2so12∫0π2xsec2x2−∫0π2d(1+cosx)1+cosx12∣2xtanx2−2lnsecx2∣0π2−∣ln(1+cosx)∣0π2={(π2tanπ4−lnsecπ4)−(0×tan02−lnsec0)}−{ln(1+0)−ln(1+1)}={(π2×1−ln2)−(0−0)}−{0−ln2}=π2−12ln2+ln2=π2+12ln2plschecksteps...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com