Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 53694 by gunawan last updated on 25/Jan/19

 ∫_( 0) ^(r π)   sin^(2n) x dx =

$$\:\underset{\:\mathrm{0}} {\overset{{r}\:\pi} {\int}}\:\:\mathrm{sin}^{\mathrm{2}{n}} {x}\:{dx}\:= \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19

∫_0 ^π sinxdx=∣−cosx∣_0 ^π =−(cosπ−cos0)=2  so the area of each loop of f(x)=sinx is 2  f(x)=sin^(2n) x  f(rπ−x)=[sin(rπ−x)]^(2n) =[eitther +sinx or −sinx]  but [sin(rπ−x)]^(2n) =sin^(2n) x  now ∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx when f(2a−x)=f(x)  sinx =sin(2π+x) peridocity 2π  ∫_0 ^(rπ) sin^(2n) xdx  =∫_0 ^((r/2)×2π) sin^(2n) xdx  =(r/2)∫_0 ^(2π) sin^(2n) xdx  =(r/2)×2∫_0 ^π sin^(2n) xdx[∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx   whenf(2a−x)=f(x)]  =2r×∫_0 ^(π/2) sin^(2n) xdx  gamma function...  2∫_0 ^(π/2) sin^(2p−1) xcos^(2q−1) xdx=((⌈(p)⌈(q))/(⌈(p+q)))  r×2∫_0 ^(π/2) sin^(2n+1−1) xcos^(2×(1/2)−1) dx  =r×((⌈(2n+1)⌈((1/2)))/(⌈(2n+1+(1/2))))  i have tried to solve..others pls check...

$$\int_{\mathrm{0}} ^{\pi} {sinxdx}=\mid−{cosx}\mid_{\mathrm{0}} ^{\pi} =−\left({cos}\pi−{cos}\mathrm{0}\right)=\mathrm{2} \\ $$$${so}\:{the}\:{area}\:{of}\:{each}\:{loop}\:{of}\:{f}\left({x}\right)={sinx}\:{is}\:\mathrm{2} \\ $$$${f}\left({x}\right)={sin}^{\mathrm{2}{n}} {x} \\ $$$${f}\left({r}\pi−{x}\right)=\left[{sin}\left({r}\pi−{x}\right)\right]^{\mathrm{2}{n}} =\left[{eitther}\:+{sinx}\:{or}\:−{sinx}\right] \\ $$$${but}\:\left[{sin}\left({r}\pi−{x}\right)\right]^{\mathrm{2}{n}} ={sin}^{\mathrm{2}{n}} {x} \\ $$$${now}\:\int_{\mathrm{0}} ^{\mathrm{2}{a}} {f}\left({x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}\:{when}\:{f}\left(\mathrm{2}{a}−{x}\right)={f}\left({x}\right) \\ $$$${sinx}\:={sin}\left(\mathrm{2}\pi+{x}\right)\:{peridocity}\:\mathrm{2}\pi \\ $$$$\int_{\mathrm{0}} ^{{r}\pi} {sin}^{\mathrm{2}{n}} {xdx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{{r}}{\mathrm{2}}×\mathrm{2}\pi} {sin}^{\mathrm{2}{n}} {xdx} \\ $$$$=\frac{{r}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}^{\mathrm{2}{n}} {xdx} \\ $$$$=\frac{{r}}{\mathrm{2}}×\mathrm{2}\int_{\mathrm{0}} ^{\pi} {sin}^{\mathrm{2}{n}} {xdx}\left[\int_{\mathrm{0}} ^{\mathrm{2}{a}} {f}\left({x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}\:\:\:{whenf}\left(\mathrm{2}{a}−{x}\right)={f}\left({x}\right)\right] \\ $$$$=\mathrm{2}{r}×\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{n}} {xdx} \\ $$$${gamma}\:{function}... \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} {xcos}^{\mathrm{2}{q}−\mathrm{1}} {xdx}=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\lceil\left({p}+{q}\right)} \\ $$$${r}×\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{n}+\mathrm{1}−\mathrm{1}} {xcos}^{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {dx} \\ $$$$={r}×\frac{\lceil\left(\mathrm{2}{n}+\mathrm{1}\right)\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\lceil\left(\mathrm{2}{n}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${i}\:{have}\:{tried}\:{to}\:{solve}..{others}\:{pls}\:{check}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com