All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 53694 by gunawan last updated on 25/Jan/19
∫rπ0sin2nxdx=
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
∫0πsinxdx=∣−cosx∣0π=−(cosπ−cos0)=2sotheareaofeachloopoff(x)=sinxis2f(x)=sin2nxf(rπ−x)=[sin(rπ−x)]2n=[eitther+sinxor−sinx]but[sin(rπ−x)]2n=sin2nxnow∫02af(x)dx=2∫0af(x)dxwhenf(2a−x)=f(x)sinx=sin(2π+x)peridocity2π∫0rπsin2nxdx=∫0r2×2πsin2nxdx=r2∫02πsin2nxdx=r2×2∫0πsin2nxdx[∫02af(x)dx=2∫0af(x)dxwhenf(2a−x)=f(x)]=2r×∫0π2sin2nxdxgammafunction...2∫0π2sin2p−1xcos2q−1xdx=⌈(p)⌈(q)⌈(p+q)r×2∫0π2sin2n+1−1xcos2×12−1dx=r×⌈(2n+1)⌈(12)⌈(2n+1+12)ihavetriedtosolve..othersplscheck...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com