All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 53697 by gunawan last updated on 25/Jan/19
Thesolutionoftheequation∫xlog21ex−1dx=π6isgivenby
Commented by Abdo msup. last updated on 25/Jan/19
letA(x)=∫log2xdtet−1⇒A(x)=et=u∫2exduuu−1=u−1=α∫1ex−12αdα(1+α2)α=2∫1ex−1dα1+α2=2[arctan(α)]1ex−1=2{arctan(ex−1)−π4}=2arctan(ex−1)−π2soA(x)=π6⇔2arctan(ex−1)=π2+π6⇒2arctan(ex−1)=4π6=2π3⇒artan(ex−1)=π3⇒ex−1=tan(π3)⇒ex−1=3⇒ex−1=3⇒ex=4⇒x=2ln(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com