Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 53697 by gunawan last updated on 25/Jan/19

The solution of the equation   ∫_(log 2) ^x   (1/(√(e^x −1))) dx= (π/6) is given by

Thesolutionoftheequationxlog21ex1dx=π6isgivenby

Commented by Abdo msup. last updated on 25/Jan/19

let A(x)=∫_(log2) ^x  (dt/(√(e^t −1)))⇒A(x)=_(e^t =u)    ∫_2 ^e^x     (du/(u(√(u−1))))  =_((√(u−1))=α)      ∫_1 ^(√(e^x −1))    ((2αdα)/((1+α^2 )α)) =2 ∫_1 ^(√(e^x −1))  (dα/(1+α^2 ))  =2[arctan(α)]_1 ^(√(e^x −1)) =2{ arctan((√(e^x −1)))−(π/4)}  =2arctan((√(e^x −1)))−(π/2) so  A(x)=(π/6)  ⇔2 arctan((√(e^x −1)))=(π/2) +(π/6) ⇒  2 arctan((√(e^x −1)))=((4π)/6) =((2π)/3) ⇒  artan((√(e^x −1)))=(π/3) ⇒(√(e^x −1))=tan((π/3)) ⇒  (√(e^x −1))=(√3) ⇒e^x −1 =3 ⇒e^x =4 ⇒x =2ln(2) .

letA(x)=log2xdtet1A(x)=et=u2exduuu1=u1=α1ex12αdα(1+α2)α=21ex1dα1+α2=2[arctan(α)]1ex1=2{arctan(ex1)π4}=2arctan(ex1)π2soA(x)=π62arctan(ex1)=π2+π62arctan(ex1)=4π6=2π3artan(ex1)=π3ex1=tan(π3)ex1=3ex1=3ex=4x=2ln(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com