Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 53732 by ajfour last updated on 25/Jan/19

f(x)=(((x+a)(x+b))/((x−a)(x−b)))  Find minimum and maximum.

$${f}\left({x}\right)=\frac{\left({x}+{a}\right)\left({x}+{b}\right)}{\left({x}−{a}\right)\left({x}−{b}\right)} \\ $$$${Find}\:{minimum}\:{and}\:{maximum}. \\ $$

Commented by mr W last updated on 25/Jan/19

at x=a and x=b: f(x)→±∞

$${at}\:{x}={a}\:{and}\:{x}={b}:\:{f}\left({x}\right)\rightarrow\pm\infty \\ $$

Commented by ajfour last updated on 25/Jan/19

There is a definite answer given,  maximum and minimum are  asked. Its from a good book, Sir.  must then be local minimum and  maximum.

$${There}\:{is}\:{a}\:{definite}\:{answer}\:{given}, \\ $$$${maximum}\:{and}\:{minimum}\:{are} \\ $$$${asked}.\:{Its}\:{from}\:{a}\:{good}\:{book},\:{Sir}. \\ $$$${must}\:{then}\:{be}\:{local}\:{minimum}\:{and} \\ $$$${maximum}. \\ $$

Commented by mr W last updated on 25/Jan/19

since f(x)→±∞ when x→a or →b,  there is no min. or max. but  there can be a local minimum and a  local maximum.  f(x)=((x^2 +(a+b)x+ab)/(x^2 −(a+b)x+ab))  f(x)=1+((2(a+b)x)/(x^2 −(a+b)x+ab))  f′(x)=0  (1/(x^2 −(a+b)x+ab))−((x(2x−(a+b)))/((x^2 −(a+b)x+ab)^2 ))=0  x^2 −(a+b)x+ab=x(2x−(a+b))  x^2 =ab  ⇒x=±(√(ab))    i.e. if ab≥0 there are local min. and  local max. at x=±(√(ab))  f(x)_(min/max) =(((a±(√(ab)))(b±(√(ab))))/((a∓(√(ab)))(b∓(√(ab)))))    if ab<0 there is no local min. or max.    but we don′t need to use calculus to  get this result, just look at  f(x)=1+((2(a+b)x)/(x^2 −(a+b)x+ab))=1+((2(a+b))/(x+((ab)/x)−(a+b)))  if ab≥0,  x+((ab)/x)≥2(√(ab))  x+((ab)/x)≤−2(√(ab))  f(x)=1+((2(a+b))/(x+((ab)/x)−(a+b)))≤1+((2(a+b))/(2(√(ab))−(a+b)))=−((((√a)+(√b))/((√a)−(√b))))^2 =f_(max)   f(x)=1+((2(a+b))/(x+((ab)/x)−(a+b)))≥1+((2(a+b))/(−2(√(ab))−(a+b)))=−((((√a)−(√b))/((√a)+(√b))))^2 =f_(min)

$${since}\:{f}\left({x}\right)\rightarrow\pm\infty\:{when}\:{x}\rightarrow{a}\:{or}\:\rightarrow{b}, \\ $$$${there}\:{is}\:{no}\:{min}.\:{or}\:{max}.\:{but} \\ $$$${there}\:{can}\:{be}\:{a}\:{local}\:{minimum}\:{and}\:{a} \\ $$$${local}\:{maximum}. \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} +\left({a}+{b}\right){x}+{ab}}{{x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}} \\ $$$${f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right){x}}{{x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}} \\ $$$${f}'\left({x}\right)=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}}−\frac{{x}\left(\mathrm{2}{x}−\left({a}+{b}\right)\right)}{\left({x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}={x}\left(\mathrm{2}{x}−\left({a}+{b}\right)\right) \\ $$$${x}^{\mathrm{2}} ={ab} \\ $$$$\Rightarrow{x}=\pm\sqrt{{ab}} \\ $$$$ \\ $$$${i}.{e}.\:{if}\:{ab}\geqslant\mathrm{0}\:{there}\:{are}\:{local}\:{min}.\:{and} \\ $$$${local}\:{max}.\:{at}\:{x}=\pm\sqrt{{ab}} \\ $$$${f}\left({x}\right)_{{min}/{max}} =\frac{\left({a}\pm\sqrt{{ab}}\right)\left({b}\pm\sqrt{{ab}}\right)}{\left({a}\mp\sqrt{{ab}}\right)\left({b}\mp\sqrt{{ab}}\right)} \\ $$$$ \\ $$$${if}\:{ab}<\mathrm{0}\:{there}\:{is}\:{no}\:{local}\:{min}.\:{or}\:{max}. \\ $$$$ \\ $$$${but}\:{we}\:{don}'{t}\:{need}\:{to}\:{use}\:{calculus}\:{to} \\ $$$${get}\:{this}\:{result},\:{just}\:{look}\:{at} \\ $$$${f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right){x}}{{x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}}=\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right)}{{x}+\frac{{ab}}{{x}}−\left({a}+{b}\right)} \\ $$$${if}\:{ab}\geqslant\mathrm{0}, \\ $$$${x}+\frac{{ab}}{{x}}\geqslant\mathrm{2}\sqrt{{ab}} \\ $$$${x}+\frac{{ab}}{{x}}\leqslant−\mathrm{2}\sqrt{{ab}} \\ $$$${f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right)}{{x}+\frac{{ab}}{{x}}−\left({a}+{b}\right)}\leqslant\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right)}{\mathrm{2}\sqrt{{ab}}−\left({a}+{b}\right)}=−\left(\frac{\sqrt{{a}}+\sqrt{{b}}}{\sqrt{{a}}−\sqrt{{b}}}\right)^{\mathrm{2}} ={f}_{{max}} \\ $$$${f}\left({x}\right)=\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right)}{{x}+\frac{{ab}}{{x}}−\left({a}+{b}\right)}\geqslant\mathrm{1}+\frac{\mathrm{2}\left({a}+{b}\right)}{−\mathrm{2}\sqrt{{ab}}−\left({a}+{b}\right)}=−\left(\frac{\sqrt{{a}}−\sqrt{{b}}}{\sqrt{{a}}+\sqrt{{b}}}\right)^{\mathrm{2}} ={f}_{{min}} \\ $$

Commented by ajfour last updated on 25/Jan/19

answer:  −((((√a)−(√b))/((√a)+(√b))))^2  &  −((((√a)+(√b))/((√a)−(√b))))^2  .

$${answer}:\:\:−\left(\frac{\sqrt{{a}}−\sqrt{{b}}}{\sqrt{{a}}+\sqrt{{b}}}\right)^{\mathrm{2}} \:\&\:\:−\left(\frac{\sqrt{{a}}+\sqrt{{b}}}{\sqrt{{a}}−\sqrt{{b}}}\right)^{\mathrm{2}} \:. \\ $$

Commented by mr W last updated on 25/Jan/19

this is the same as my result (see below).  answer in book is not the best, since  it requests that a≥0 and b≥0, but in  fact this is not necessary. it is only  necessary that ab≥0, e.g. a=−2, b=−5.

$${this}\:{is}\:{the}\:{same}\:{as}\:{my}\:{result}\:\left({see}\:{below}\right). \\ $$$${answer}\:{in}\:{book}\:{is}\:{not}\:{the}\:{best},\:{since} \\ $$$${it}\:{requests}\:{that}\:{a}\geqslant\mathrm{0}\:{and}\:{b}\geqslant\mathrm{0},\:{but}\:{in} \\ $$$${fact}\:{this}\:{is}\:{not}\:{necessary}.\:{it}\:{is}\:{only} \\ $$$${necessary}\:{that}\:{ab}\geqslant\mathrm{0},\:{e}.{g}.\:{a}=−\mathrm{2},\:{b}=−\mathrm{5}. \\ $$

Commented by mr W last updated on 25/Jan/19

(((a+(√(ab)))(b+(√(ab))))/((a−(√(ab)))(b−(√(ab)))))  =(((√a)((√a)+(√b))(√b)((√b)+(√a)))/((√a)((√a)−(√b))(√b)((√b)−(√a))))  =−((((√a)+(√b))((√a)+(√b)))/(((√a)−(√b))((√a)−(√b))))  =−((((√a)+(√b))/((√a)−(√b))))^2 =as given in book    (((a−(√(ab)))(b−(√(ab))))/((a+(√(ab)))(b+(√(ab)))))  =(((√a)((√a)−(√b))(√b)((√b)−(√a)))/((√a)((√a)+(√b))(√b)((√b)+(√a))))  =−((((√a)−(√b))((√a)−(√b)))/(((√a)+(√b))((√a)+(√b))))  =−((((√a)−(√b))/((√a)+(√b))))^2 =as given in book

$$\frac{\left({a}+\sqrt{{ab}}\right)\left({b}+\sqrt{{ab}}\right)}{\left({a}−\sqrt{{ab}}\right)\left({b}−\sqrt{{ab}}\right)} \\ $$$$=\frac{\sqrt{{a}}\left(\sqrt{{a}}+\sqrt{{b}}\right)\sqrt{{b}}\left(\sqrt{{b}}+\sqrt{{a}}\right)}{\sqrt{{a}}\left(\sqrt{{a}}−\sqrt{{b}}\right)\sqrt{{b}}\left(\sqrt{{b}}−\sqrt{{a}}\right)} \\ $$$$=−\frac{\left(\sqrt{{a}}+\sqrt{{b}}\right)\left(\sqrt{{a}}+\sqrt{{b}}\right)}{\left(\sqrt{{a}}−\sqrt{{b}}\right)\left(\sqrt{{a}}−\sqrt{{b}}\right)} \\ $$$$=−\left(\frac{\sqrt{{a}}+\sqrt{{b}}}{\sqrt{{a}}−\sqrt{{b}}}\right)^{\mathrm{2}} ={as}\:{given}\:{in}\:{book} \\ $$$$ \\ $$$$\frac{\left({a}−\sqrt{{ab}}\right)\left({b}−\sqrt{{ab}}\right)}{\left({a}+\sqrt{{ab}}\right)\left({b}+\sqrt{{ab}}\right)} \\ $$$$=\frac{\sqrt{{a}}\left(\sqrt{{a}}−\sqrt{{b}}\right)\sqrt{{b}}\left(\sqrt{{b}}−\sqrt{{a}}\right)}{\sqrt{{a}}\left(\sqrt{{a}}+\sqrt{{b}}\right)\sqrt{{b}}\left(\sqrt{{b}}+\sqrt{{a}}\right)} \\ $$$$=−\frac{\left(\sqrt{{a}}−\sqrt{{b}}\right)\left(\sqrt{{a}}−\sqrt{{b}}\right)}{\left(\sqrt{{a}}+\sqrt{{b}}\right)\left(\sqrt{{a}}+\sqrt{{b}}\right)} \\ $$$$=−\left(\frac{\sqrt{{a}}−\sqrt{{b}}}{\sqrt{{a}}+\sqrt{{b}}}\right)^{\mathrm{2}} ={as}\:{given}\:{in}\:{book} \\ $$

Commented by ajfour last updated on 25/Jan/19

yes, sir. too well did you explain.  Thank you too much.

$${yes},\:{sir}.\:{too}\:{well}\:{did}\:{you}\:{explain}. \\ $$$${Thank}\:{you}\:{too}\:{much}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19

y=(((x+a)(x+b))/((x−a)(x−b)))  lny=ln(x+a)+ln(x+b)−ln(x−a)−ln(x−b)  (1/y)(dy/dx)=(1/(x+a))+(1/(x+b))−(1/(x−a))−(1/(x−b))  for max/min (dy/dx)=0  (1/(x+a))−(1/(x−b))+(1/(x+b))−(1/(x−a))=0  ((x−b−x−a)/((x+a)(x−b)))+((x−a−x−b)/((x+b)(x−a)))=0  ((−(a+b))/((x+a)(x−b)))+((−(a+b))/((x+b)(x−a)))=0  (1/((x+a)(x−b)))+(1/((x+b)(x−a)))=0  x^2 −ax+bx−ab+x^2 −bx+ax−ab=0  2x^2 −2ab=0  x=±(√(ab))   (1/y)(dy/dx)=(1/(x+a))+(1/(x+b))−(1/(x−a))−(1/(x−b))  (dy/dx)=(((x+a)(x+b))/((x−a)(x−b)))[(1/(x+a))+(1/(x+b))−(1/(x−a))−(1/(x−b))]  ((wait...)/)wl  now i am going to find change of sign  using first derivativd method to find max/min  ((dy/dx))=(((x+a)(x+b))/(x^2 −x(a+b)+ab))×[(1/(x+a))−(1/(x−b))+(1/(x+b))−(1/(x−a))]  =((x^2 +x(a+b)+ab)/(x^2 −x(a+b)+ab))×[((x−b−x−a)/(x^2 −xb+ax−ab))+((x−a−x−b)/(x^2 −ax+bx−ab))]  =(N/D)×[((−(a+b))/(x^2 −ab+x(a−b)))+((−(a+b))/(x^2 −ab−x(a−b)))]  =(N/D)×−(a+b)×[((x^2 −ab−x(a−b)+x^2 −ab+x(a−b))/((x^2 −ab)^2 −x^2 (a−b)^2 ))]  nowD<N  so(N/D)>1   (N/D)×−(a+b)=−ve  [((2(x^2 −ab))/((x^2 −ab)^2 −x^2 {(a+b)^2 −4ab))]  when x>(√(ab))  x^2 =h+ab  =(N/D)×−(a+b)×[((2(x^2 −ab))/((x^2 −ab)^2 −x^2 {(a+b)^2 −4ab))]  =(−ve)×[((2h)/(h^2 −(h+ab)(a−b)^2 ))]=(−ve)×((+ve)/(−ve))  when x>(√(ab)) sign change from −ve to +ve  so at x=(√(ab)) f(x) min  y_ =(((x+a)(x+b))/((x−a)(x−b))) (at x=(√(ab)) )    =(((√a) ((√b) +(√a) )×(√b) ((√a) +(√b) ))/((√a) ((√b) −(√a) )×(√b) ((√a) −(√b) )))  =(−)((((√a) +(√b) )^2 )/(((√(b−))(√a) )^2 )) →min value  so at x=(√(ab))  min value    at x=−(√(ab)) max value  y=(((−(√(ab)) +a)(−(√(ab)) +b))/((−(√(ab)) −a)(−(√(ab)) −b)))  =(((√a) ((√a) −(√b) )×−(√b) ((√a) −(√b) ))/(−(√a) ((√a) +(√b) )×−(√b) ((√a) +(√b) )))   =(−1)×((((√a) −(√b) )^2 )/(((√a) +(√b) )))←max vzlud...

$${y}=\frac{\left({x}+{a}\right)\left({x}+{b}\right)}{\left({x}−{a}\right)\left({x}−{b}\right)} \\ $$$${lny}={ln}\left({x}+{a}\right)+{ln}\left({x}+{b}\right)−{ln}\left({x}−{a}\right)−{ln}\left({x}−{b}\right) \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{x}+{a}}+\frac{\mathrm{1}}{{x}+{b}}−\frac{\mathrm{1}}{{x}−{a}}−\frac{\mathrm{1}}{{x}−{b}} \\ $$$${for}\:{max}/{min}\:\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{x}+{a}}−\frac{\mathrm{1}}{{x}−{b}}+\frac{\mathrm{1}}{{x}+{b}}−\frac{\mathrm{1}}{{x}−{a}}=\mathrm{0} \\ $$$$\frac{{x}−{b}−{x}−{a}}{\left({x}+{a}\right)\left({x}−{b}\right)}+\frac{{x}−{a}−{x}−{b}}{\left({x}+{b}\right)\left({x}−{a}\right)}=\mathrm{0} \\ $$$$\frac{−\left({a}+{b}\right)}{\left({x}+{a}\right)\left({x}−{b}\right)}+\frac{−\left({a}+{b}\right)}{\left({x}+{b}\right)\left({x}−{a}\right)}=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\left({x}+{a}\right)\left({x}−{b}\right)}+\frac{\mathrm{1}}{\left({x}+{b}\right)\left({x}−{a}\right)}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{ax}+{bx}−{ab}+{x}^{\mathrm{2}} −{bx}+{ax}−{ab}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{ab}=\mathrm{0} \\ $$$${x}=\pm\sqrt{{ab}}\: \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{x}+{a}}+\frac{\mathrm{1}}{{x}+{b}}−\frac{\mathrm{1}}{{x}−{a}}−\frac{\mathrm{1}}{{x}−{b}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\left({x}+{a}\right)\left({x}+{b}\right)}{\left({x}−{a}\right)\left({x}−{b}\right)}\left[\frac{\mathrm{1}}{{x}+{a}}+\frac{\mathrm{1}}{{x}+{b}}−\frac{\mathrm{1}}{{x}−{a}}−\frac{\mathrm{1}}{{x}−{b}}\right] \\ $$$$\frac{{wait}...}{}{wl} \\ $$$${now}\:{i}\:{am}\:{going}\:{to}\:{find}\:{change}\:{of}\:{sign} \\ $$$${using}\:{first}\:{derivativd}\:{method}\:{to}\:{find}\:{max}/{min} \\ $$$$\left(\frac{{dy}}{{dx}}\right)=\frac{\left({x}+{a}\right)\left({x}+{b}\right)}{{x}^{\mathrm{2}} −{x}\left({a}+{b}\right)+{ab}}×\left[\frac{\mathrm{1}}{{x}+{a}}−\frac{\mathrm{1}}{{x}−{b}}+\frac{\mathrm{1}}{{x}+{b}}−\frac{\mathrm{1}}{{x}−{a}}\right] \\ $$$$=\frac{{x}^{\mathrm{2}} +{x}\left({a}+{b}\right)+{ab}}{{x}^{\mathrm{2}} −{x}\left({a}+{b}\right)+{ab}}×\left[\frac{{x}−{b}−{x}−{a}}{{x}^{\mathrm{2}} −{xb}+{ax}−{ab}}+\frac{{x}−{a}−{x}−{b}}{{x}^{\mathrm{2}} −{ax}+{bx}−{ab}}\right] \\ $$$$=\frac{{N}}{{D}}×\left[\frac{−\left({a}+{b}\right)}{{x}^{\mathrm{2}} −{ab}+{x}\left({a}−{b}\right)}+\frac{−\left({a}+{b}\right)}{{x}^{\mathrm{2}} −{ab}−{x}\left({a}−{b}\right)}\right] \\ $$$$=\frac{{N}}{{D}}×−\left({a}+{b}\right)×\left[\frac{{x}^{\mathrm{2}} −{ab}−{x}\left({a}−{b}\right)+{x}^{\mathrm{2}} −{ab}+{x}\left({a}−{b}\right)}{\left({x}^{\mathrm{2}} −{ab}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left({a}−{b}\right)^{\mathrm{2}} }\right] \\ $$$${nowD}<{N}\:\:{so}\frac{{N}}{{D}}>\mathrm{1}\:\:\:\frac{{N}}{{D}}×−\left({a}+{b}\right)=−{ve} \\ $$$$\left[\frac{\mathrm{2}\left({x}^{\mathrm{2}} −{ab}\right)}{\left({x}^{\mathrm{2}} −{ab}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left\{\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{4}{ab}\right.}\right] \\ $$$${when}\:{x}>\sqrt{{ab}}\:\:{x}^{\mathrm{2}} ={h}+{ab} \\ $$$$=\frac{{N}}{{D}}×−\left({a}+{b}\right)×\left[\frac{\mathrm{2}\left({x}^{\mathrm{2}} −{ab}\right)}{\left({x}^{\mathrm{2}} −{ab}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left\{\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{4}{ab}\right.}\right] \\ $$$$=\left(−{ve}\right)×\left[\frac{\mathrm{2}{h}}{{h}^{\mathrm{2}} −\left({h}+{ab}\right)\left({a}−{b}\right)^{\mathrm{2}} }\right]=\left(−{ve}\right)×\frac{+{ve}}{−{ve}} \\ $$$${when}\:{x}>\sqrt{{ab}}\:{sign}\:{change}\:{from}\:−{ve}\:{to}\:+{ve} \\ $$$${so}\:{at}\:{x}=\sqrt{{ab}}\:{f}\left({x}\right)\:{min} \\ $$$${y}_{} =\frac{\left({x}+{a}\right)\left({x}+{b}\right)}{\left({x}−{a}\right)\left({x}−{b}\right)}\:\left({at}\:{x}=\sqrt{{ab}}\:\right) \\ $$$$\:\:=\frac{\sqrt{{a}}\:\left(\sqrt{{b}}\:+\sqrt{{a}}\:\right)×\sqrt{{b}}\:\left(\sqrt{{a}}\:+\sqrt{{b}}\:\right)}{\sqrt{{a}}\:\left(\sqrt{{b}}\:−\sqrt{{a}}\:\right)×\sqrt{{b}}\:\left(\sqrt{{a}}\:−\sqrt{{b}}\:\right)} \\ $$$$=\left(−\right)\frac{\left(\sqrt{{a}}\:+\sqrt{{b}}\:\right)^{\mathrm{2}} }{\left(\sqrt{{b}−}\sqrt{{a}}\:\right)^{\mathrm{2}} }\:\rightarrow{min}\:{value} \\ $$$${so}\:{at}\:{x}=\sqrt{{ab}}\:\:{min}\:{value} \\ $$$$ \\ $$$${at}\:{x}=−\sqrt{{ab}}\:{max}\:{value} \\ $$$${y}=\frac{\left(−\sqrt{{ab}}\:+{a}\right)\left(−\sqrt{{ab}}\:+{b}\right)}{\left(−\sqrt{{ab}}\:−{a}\right)\left(−\sqrt{{ab}}\:−{b}\right)} \\ $$$$=\frac{\sqrt{{a}}\:\left(\sqrt{{a}}\:−\sqrt{{b}}\:\right)×−\sqrt{{b}}\:\left(\sqrt{{a}}\:−\sqrt{{b}}\:\right)}{−\sqrt{{a}}\:\left(\sqrt{{a}}\:+\sqrt{{b}}\:\right)×−\sqrt{{b}}\:\left(\sqrt{{a}}\:+\sqrt{{b}}\:\right)}\: \\ $$$$=\left(−\mathrm{1}\right)×\frac{\left(\sqrt{{a}}\:−\sqrt{{b}}\:\right)^{\mathrm{2}} }{\left(\sqrt{{a}}\:+\sqrt{{b}}\:\right)}\leftarrow{max}\:{vzlud}... \\ $$$$ \\ $$

Commented by ajfour last updated on 25/Jan/19

welcome back Sir..

$${welcome}\:{back}\:{Sir}.. \\ $$

Commented by ajfour last updated on 25/Jan/19

thanks sir, do i post the answer?

$${thanks}\:{sir},\:{do}\:{i}\:{post}\:{the}\:{answer}? \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19

i went to see the news...

$${i}\:{went}\:{to}\:{see}\:{the}\:{news}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com