Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 53778 by maxmathsup by imad last updated on 25/Jan/19

let U_n =(1/(nH_n ))    with H_n =Σ_(k=1) ^n  (1/k)  study the convergence of Σ_(n≥1)  U_n   2) study the convergence of Σ_(n≥1) U_n ^2

$${let}\:{U}_{{n}} =\frac{\mathrm{1}}{{nH}_{{n}} }\:\:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} \:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\sum_{{n}\geqslant\mathrm{1}} {U}_{{n}} ^{\mathrm{2}} \\ $$

Commented by maxmathsup by imad last updated on 18/Feb/19

we have H_n =ln(n)+γ +o((1/n)) ⇒nH_n  =nln(n) +nγ +o(1) ⇒  (1/(nH_n )) ∼  (1/(nln(n)+nγ +o(1))) ∼ (1/(n(ln(n)+γ)))  the sequence n→(1/(n(ln(n)+γ)))  is decreasing  positive so Σ U_n   and  ∫_e ^(+∞)    (dx/(x(ln(x)+γ))) have the same nature  changement  ln(x)=t give   ∫_e ^(+∞)   (dx/(x{ln(x)+γ))) =∫_1 ^(+∞)   ((e^t dt)/(e^t (t+γ)))dt  =∫_1 ^(+∞)    (dt/(t+γ))  and this integral diverges ⇒Σ U_n  is divergent ..

$${we}\:{have}\:{H}_{{n}} ={ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{nH}_{{n}} \:={nln}\left({n}\right)\:+{n}\gamma\:+{o}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{nH}_{{n}} }\:\sim\:\:\frac{\mathrm{1}}{{nln}\left({n}\right)+{n}\gamma\:+{o}\left(\mathrm{1}\right)}\:\sim\:\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)+\gamma\right)}\:\:{the}\:{sequence}\:{n}\rightarrow\frac{\mathrm{1}}{{n}\left({ln}\left({n}\right)+\gamma\right)} \\ $$$${is}\:{decreasing}\:\:{positive}\:{so}\:\Sigma\:{U}_{{n}} \:\:{and}\:\:\int_{{e}} ^{+\infty} \:\:\:\frac{{dx}}{{x}\left({ln}\left({x}\right)+\gamma\right)}\:{have}\:{the}\:{same}\:{nature} \\ $$$${changement}\:\:{ln}\left({x}\right)={t}\:{give}\:\:\:\int_{{e}} ^{+\infty} \:\:\frac{{dx}}{{x}\left\{{ln}\left({x}\right)+\gamma\right)}\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{{t}} {dt}}{{e}^{{t}} \left({t}+\gamma\right)}{dt} \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}+\gamma}\:\:{and}\:{this}\:{integral}\:{diverges}\:\Rightarrow\Sigma\:{U}_{{n}} \:{is}\:{divergent}\:.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com