Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 53781 by maxmathsup by imad last updated on 25/Jan/19

calculateA_n =Σ_(n=1) ^∞  x^n cos(nθ)  and B_n =Σ_(n=1) ^∞  x^n sin(nθ)

$${calculateA}_{{n}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} {cos}\left({n}\theta\right)\:\:{and}\:{B}_{{n}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} {sin}\left({n}\theta\right) \\ $$

Commented by maxmathsup by imad last updated on 26/Jan/19

we have A_n +i B_n =Σ_(n=1) ^∞  x^n  e^(inθ)  =Σ_(n=0) ^∞ (x e^(iθ) )^n  −1   so if ∣x∣<1   we get A_n  +iB_n =(1/(1−xe^(iθ) )) −1 =(1/(1−xcosθ −ix sinθ)) −1  = ((1−xcosθ +ix sinθ)/((1−xcosθ)^2  +x^2 sin^2 θ)) −1  =((1−xcosθ)/(1−2xcosθ +x^2 )) −1 +i((xsinθ)/(x^2  −2xcosθ +1))  =((1−xcosθ −1 +2xcosθ−x^2 )/(x^2  −2xcosθ +1)) +i ((xsinθ)/(x^2 −2x cosθ +1)) ⇒  A_n =((−x^2  +x cosθ +1)/(x^2  −2xcosθ +1))  and B_n =((xsinθ)/(x^2  −2x cosθ +1))

$${we}\:{have}\:{A}_{{n}} +{i}\:{B}_{{n}} =\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}} \:{e}^{{in}\theta} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \left({x}\:{e}^{{i}\theta} \right)^{{n}} \:−\mathrm{1} \\ $$$$\:{so}\:{if}\:\mid{x}\mid<\mathrm{1}\:\:\:{we}\:{get}\:{A}_{{n}} \:+{iB}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{i}\theta} }\:−\mathrm{1}\:=\frac{\mathrm{1}}{\mathrm{1}−{xcos}\theta\:−{ix}\:{sin}\theta}\:−\mathrm{1} \\ $$$$=\:\frac{\mathrm{1}−{xcos}\theta\:+{ix}\:{sin}\theta}{\left(\mathrm{1}−{xcos}\theta\right)^{\mathrm{2}} \:+{x}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}\:−\mathrm{1} \\ $$$$=\frac{\mathrm{1}−{xcos}\theta}{\mathrm{1}−\mathrm{2}{xcos}\theta\:+{x}^{\mathrm{2}} }\:−\mathrm{1}\:+{i}\frac{{xsin}\theta}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\theta\:+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}−{xcos}\theta\:−\mathrm{1}\:+\mathrm{2}{xcos}\theta−{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\theta\:+\mathrm{1}}\:+{i}\:\frac{{xsin}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}}\:\Rightarrow \\ $$$${A}_{{n}} =\frac{−{x}^{\mathrm{2}} \:+{x}\:{cos}\theta\:+\mathrm{1}}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcos}\theta\:+\mathrm{1}}\:\:{and}\:{B}_{{n}} =\frac{{xsin}\theta}{{x}^{\mathrm{2}} \:−\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}} \\ $$$$ \\ $$

Answered by Smail last updated on 26/Jan/19

A_n +iB_n =Σ_(n=1) ^∞ x^n e^(inθ)   =Σ_(n=0) ^∞ (xe^(iθ) )^n −1=(1/(1−xe^(iθ) ))−1=((xe^(iθ) )/(1−xe^(iθ) ))  =((xe^(iθ) )/(1−xcosθ−xisinθ))  =((xe^(iθ) (1−xe^(−iθ) ))/((1−xe^(iθ) )(1−xe^(−iθ) )))=((x(e^(iθ) −x))/(1−x(e^(iθ) +e^(−iθ) )+x^2 ))  =((x(cosθ−x+isinθ))/(1+x^2 −2xcosθ))  A_n +iB_n =((x(cosθ−x))/(1+x^2 −2xcosθ))+i((xsinθ)/(1+x^2 −2xcosθ))  A_n =((x(cosθ−x))/((x−cosθ)^2 +sin^2 θ))  B_n =((xsinθ)/((x−cosθ)^2 +sin^2 θ))

$${A}_{{n}} +{iB}_{{n}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{{n}} {e}^{{in}\theta} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({xe}^{{i}\theta} \right)^{{n}} −\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{i}\theta} }−\mathrm{1}=\frac{{xe}^{{i}\theta} }{\mathrm{1}−{xe}^{{i}\theta} } \\ $$$$=\frac{{xe}^{{i}\theta} }{\mathrm{1}−{xcos}\theta−{xisin}\theta} \\ $$$$=\frac{{xe}^{{i}\theta} \left(\mathrm{1}−{xe}^{−{i}\theta} \right)}{\left(\mathrm{1}−{xe}^{{i}\theta} \right)\left(\mathrm{1}−{xe}^{−{i}\theta} \right)}=\frac{{x}\left({e}^{{i}\theta} −{x}\right)}{\mathrm{1}−{x}\left({e}^{{i}\theta} +{e}^{−{i}\theta} \right)+{x}^{\mathrm{2}} } \\ $$$$=\frac{{x}\left({cos}\theta−{x}+{isin}\theta\right)}{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta} \\ $$$${A}_{{n}} +{iB}_{{n}} =\frac{{x}\left({cos}\theta−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta}+{i}\frac{{xsin}\theta}{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{xcos}\theta} \\ $$$${A}_{{n}} =\frac{{x}\left({cos}\theta−{x}\right)}{\left({x}−{cos}\theta\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \theta} \\ $$$${B}_{{n}} =\frac{{xsin}\theta}{\left({x}−{cos}\theta\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \theta} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com