All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53783 by maxmathsup by imad last updated on 25/Jan/19
calculate∫0∞t2et−1dtintermsofξ(3)
Answered by Smail last updated on 26/Jan/19
A∫0∞t2et−1dt=∫0∞t2e−t1−e−tdt=∫0∞t2e−t∑∞n=0e−ntdt=∑∞n=0∫0∞t2e−(n+1)tdtbypartsu=t2⇒u′=2tv′=e−(n+1)t⇒v=−1n+1e−(n+1)tA=∑∞n=02n+1∫0∞te−(n+1)tdtwith([t2e−(n+1)t]0∞=0)bypartsA=∑∞n=02(n+1)2∫0∞e−(n+1)tdt=∑∞n=02(n+1)3[e−(n+1)t]0∞=2∑∞n=01(n+1)3=2∑∞n=11n3=2ξ(3)
Commented by maxmathsup by imad last updated on 26/Jan/19
thankyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com