Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53783 by maxmathsup by imad last updated on 25/Jan/19

calculate ∫_0 ^∞  (t^2 /(e^t −1))dt interms of ξ(3)

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{\mathrm{2}} }{{e}^{{t}} −\mathrm{1}}{dt}\:{interms}\:{of}\:\xi\left(\mathrm{3}\right) \\ $$

Answered by Smail last updated on 26/Jan/19

A∫_0 ^∞ (t^2 /(e^t −1))dt=∫_0 ^∞ ((t^2 e^(−t) )/(1−e^(−t) ))dt  =∫_0 ^∞ t^2 e^(−t) Σ_(n=0) ^∞ e^(−nt) dt  =Σ_(n=0) ^∞ ∫_0 ^∞ t^2 e^(−(n+1)t) dt  by parts  u=t^2 ⇒u′=2t  v′=e^(−(n+1)t) ⇒v=((−1)/(n+1))e^(−(n+1)t)   A=Σ_(n=0) ^∞ (2/(n+1))∫_0 ^∞ te^(−(n+1)t) dt  with  ([t^2 e^(−(n+1)t) ]_0 ^∞ =0)  by parts  A=Σ_(n=0) ^∞ (2/((n+1)^2 ))∫_0 ^∞ e^(−(n+1)t) dt  =Σ_(n=0) ^∞ (2/((n+1)^3 ))[e^(−(n+1)t) ]_0 ^∞ =2Σ_(n=0) ^∞ (1/((n+1)^3 ))  =2Σ_(n=1) ^∞ (1/n^3 )=2ξ(3)

$${A}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} }{{e}^{{t}} −\mathrm{1}}{dt}=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} {e}^{−{t}} }{\mathrm{1}−{e}^{−{t}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{2}} {e}^{−{t}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{nt}} {dt} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{2}} {e}^{−\left({n}+\mathrm{1}\right){t}} {dt} \\ $$$${by}\:{parts} \\ $$$${u}={t}^{\mathrm{2}} \Rightarrow{u}'=\mathrm{2}{t} \\ $$$${v}'={e}^{−\left({n}+\mathrm{1}\right){t}} \Rightarrow{v}=\frac{−\mathrm{1}}{{n}+\mathrm{1}}{e}^{−\left({n}+\mathrm{1}\right){t}} \\ $$$${A}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\infty} {te}^{−\left({n}+\mathrm{1}\right){t}} {dt}\:\:{with}\:\:\left(\left[{t}^{\mathrm{2}} {e}^{−\left({n}+\mathrm{1}\right){t}} \right]_{\mathrm{0}} ^{\infty} =\mathrm{0}\right) \\ $$$${by}\:{parts} \\ $$$${A}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {e}^{−\left({n}+\mathrm{1}\right){t}} {dt} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }\left[{e}^{−\left({n}+\mathrm{1}\right){t}} \right]_{\mathrm{0}} ^{\infty} =\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$=\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} }=\mathrm{2}\xi\left(\mathrm{3}\right) \\ $$

Commented by maxmathsup by imad last updated on 26/Jan/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com