Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53785 by maxmathsup by imad last updated on 25/Jan/19

let f(x)=∫_0 ^∞  ((tsin(tx))/(1+t^4 ))dt  with x>0  1) find a explicit form of f(x)  2) find the value of ∫_0 ^∞   ((tsin(2t))/(1+t^4 ))dt.

letf(x)=0tsin(tx)1+t4dtwithx>0 1)findaexplicitformoff(x) 2)findthevalueof0tsin(2t)1+t4dt.

Commented bymaxmathsup by imad last updated on 26/Jan/19

1) we have 2f(x)=∫_(−∞) ^(+∞)    ((t sin(tx))/(t^4  +1))dt=Im(∫_(−∞) ^(+∞)  ((t e^(itx) )/(t^4  +1))dt) let consider the complex function  ϕ(z) = ((z e^(ixz) )/(z^4  +1))  ⇒ϕ(z) =((z e^(ixz) )/((z^2 −i)(z^2  +i))) =((z e^(ixz) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  the poles of ϕ are +^−  e^((iπ)/4)    and +^−  e^(−((iπ)/4))   ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ{ Res(ϕ , e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ, e^((iπ)/4) ) = ((e^((iπ)/4)  e^(ix((1/(√2))+(i/(√2)))) )/(2e^((iπ)/4) (2i))) =(1/(4i)) e^((ix)/(√2))   .e^(−(t/(√2))) =(e^(−(x/(√2))) /(4i)) e^((ix)/(√2))   Res(ϕ,−e^(−((iπ)/4)) ) =((−e^(−((iπ)/4))   e^(ix(−(1/(√2))+(i/(√2)))) )/((−2ie^(−((iπ)/4)) )(−2i))) =−(1/(4i)) e^(−(x/(√2))) e^(−((ix)/(√2)))     ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ e^(−(x/(√2))) { (1/(4i)) e^((ix)/(√2))   −(1/(4i)) e^(−((ix)/2)) }  =(π/2) e^(−(x/(√2))) { 2i sin((x/(√2)))} =iπ e^(−(x/(√2)))  sin((x/(√2))) ⇒2f(x)=π e^(−(x/(√(2 ))))   sin((x/(√2))) ⇒  ★f(x) =(π/2) e^(−(x/(√2)))  sin((x/(√2)))★  2) this integral is a spacial case   ∫_0 ^(+∞)  ((tsin(2t))/(1+t^4 )) dt =f(2) = (π/2) e^(−(√2))  sin((√2)) .

1)wehave2f(x)=+tsin(tx)t4+1dt=Im(+teitxt4+1dt)letconsiderthecomplexfunction φ(z)=zeixzz4+1φ(z)=zeixz(z2i)(z2+i)=zeixz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4) thepolesofφare+eiπ4and+eiπ4 +φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)} Res(φ,eiπ4)=eiπ4eix(12+i2)2eiπ4(2i)=14ieix2.et2=ex24ieix2 Res(φ,eiπ4)=eiπ4eix(12+i2)(2ieiπ4)(2i)=14iex2eix2 +φ(z)dz=2iπex2{14ieix214ieix2} =π2ex2{2isin(x2)}=iπex2sin(x2)2f(x)=πex2sin(x2) f(x)=π2ex2sin(x2) 2)thisintegralisaspacialcase 0+tsin(2t)1+t4dt=f(2)=π2e2sin(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com