All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53785 by maxmathsup by imad last updated on 25/Jan/19
letf(x)=∫0∞tsin(tx)1+t4dtwithx>0 1)findaexplicitformoff(x) 2)findthevalueof∫0∞tsin(2t)1+t4dt.
Commented bymaxmathsup by imad last updated on 26/Jan/19
1)wehave2f(x)=∫−∞+∞tsin(tx)t4+1dt=Im(∫−∞+∞teitxt4+1dt)letconsiderthecomplexfunction φ(z)=zeixzz4+1⇒φ(z)=zeixz(z2−i)(z2+i)=zeixz(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4) thepolesofφare+−eiπ4and+−e−iπ4 ∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)} Res(φ,eiπ4)=eiπ4eix(12+i2)2eiπ4(2i)=14ieix2.e−t2=e−x24ieix2 Res(φ,−e−iπ4)=−e−iπ4eix(−12+i2)(−2ie−iπ4)(−2i)=−14ie−x2e−ix2⇒ ∫−∞+∞φ(z)dz=2iπe−x2{14ieix2−14ie−ix2} =π2e−x2{2isin(x2)}=iπe−x2sin(x2)⇒2f(x)=πe−x2sin(x2)⇒ ★f(x)=π2e−x2sin(x2)★ 2)thisintegralisaspacialcase ∫0+∞tsin(2t)1+t4dt=f(2)=π2e−2sin(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com