Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 53795 by maxmathsup by imad last updated on 25/Jan/19

calculate Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) =1−(1/5) +(1/9) −(1/(13)) +....

calculaten=0(1)n4n+1=115+19113+....

Commented by maxmathsup by imad last updated on 26/Jan/19

let S(x)=Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) x^(4n+1)   with∣x∣<1  due to uniform convergence we have  (d/dx)S(x) =Σ_(n=0) ^∞ (−1)^n  x^(4n)  =Σ_(n=0) ^∞ (−x^4 )^n =(1/(1+x^4 )) ⇒S(x)=∫_0 ^x   (dt/(t^4  +1)) +c  c=S(0)=0 ⇒S(x)=∫_0 ^x   (dt/(t^4  +1)) and Σ_(n=0) ^∞   (((−1)^n )/(4n+1)) =S(1)=∫_0 ^1   (dt/(t^4  +1))  let decompose F(t) =(1/(t^4  +1)) ⇒ F(t)=(1/((t^2  +1)^2 −2t^2 )) =(1/((t^2 +(√2)t +1)(t^2 −(√2)t +1)))  =((at+b)/(t^2  +(√2)t +1)) +((ct +d)/(t^2 −(√2)t +1))  F(−t) =F(t) ⇒((−at +b)/(t^2 −(√2)t +1)) +((−bt +c)/(t^2  +(√2)t +1)) =F(t) ⇒c=−a and d=b ⇒  F(t) =((at +b)/(t^2  +(√2)t +1)) +((−at +b)/(t^2 −(√2)t +1))  F(0) =1 =2b ⇒b =(1/2)  F(1) =(1/2) =((a +b)/(2+(√2))) +((−a+b)/(2−(√2))) ⇒ (1/2) =(((2−(√2))(a+(1/2))+(2+(√2))(−a+(1/2)))/2) ⇒  −2(√2)a  +(1/(2 ))(4) =1 ⇒ −2(√2)a =−1 ⇒a =(1/(2(√2))) ⇒  F(t) = (((t/(2(√2)))+(1/2))/(t^2  +(√2)t +1)) +((−(t/(2(√2)))+(1/2))/(t^2 −(√2)t +1)) =(1/(2(√2))){   ((t+(√2))/(t^2  +(√2)t +1)) +((−t +(√2))/(t^2  −(√2)t +1))} ⇒  ∫_0 ^1  (dt/(t^4  +1)) =((√2)/4){ ∫_0 ^1   ((t+(√2))/(t^2  +(√2)t +1))dt − ∫_0 ^1  ((t−(√2))/(t^2  −(√2)t +1))}  =((√2)/4){ (1/2) ∫_0 ^1  ((2t +(√2) +(√2))/(t^2  +(√2)t +1)) dt −(1/2)∫_0 ^1  ((2t−(√2)−(√2))/(t^2  −(√2)t +1)) dt}  =((√2)/8){  [ln(t^2  +(√2)t +1)]_0 ^1  −[ln(t^2 −(√2)t +1)]_0 ^1   +(√2)∫_0 ^1   (dt/(t^2  +(√2)t +1))  +(√2)∫_0 ^1   (dt/(t^2 −(√2)t +1))}  =((√2)/8){ ln(2+(√2))−ln(2−(√2))} +(1/4){ ∫_0 ^1   (dt/(t^2  +(√2)t +1)) +∫_0 ^1   (dt/(t^2  −(√2)t +1))} but  ∫_0 ^1    (dt/(t^2  +(√2)t +1)) = ∫_0 ^1   (dt/(t^2  +2 ((√2)/2)t +(1/2)+(1/2))) =∫_0 ^1   (dt/((t+(1/(√2)))^2  +(1/2)))  =_(t +(1/(√2))=(u/(√2)))    ∫_1 ^(1+(√2))      (du/((√2)(1/2)(1+u^2 ))) =(√2) ∫_1 ^(1+(√2))  (du/u) =(√2){arctan((√2)+1)−(π/4)}  ∫_0 ^1    (dt/(t^2 −(√2)t +1)) = ∫_0 ^1    (dt/((t−(1/(√2)))^2  +(1/2))) =_(t−(1/(√2))=(u/(√2)))     ∫_(−1) ^((√2)−1)    (du/((√2)(1/2)(1+u^2 )))  =(√2){arctan((√2)−1) +(π/4)} ⇒  ∫_0 ^1   (dt/(t^4  +1)) =((√2)/8)ln(((2+(√2))/(2−(√2)))) +((√2)/4){ arctan((√2)+1) +arctan((√2)−1)} but  arctan((√2)−1) =arctan( (1/((√2)+1)))=(π/2) −arctan((√2)+1) ⇒  ∫_0 ^1   (dt/(t^4  +1)) =((√2)/8)ln(((2+(√2))/(2−(√2)))) +((π(√2))/8) ⇒ Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) =((√2)/8)ln(((2+(√2))/(2−(√2))))+((π(√2))/8) .

letS(x)=n=0(1)n4n+1x4n+1withx∣<1duetouniformconvergencewehaveddxS(x)=n=0(1)nx4n=n=0(x4)n=11+x4S(x)=0xdtt4+1+cc=S(0)=0S(x)=0xdtt4+1andn=0(1)n4n+1=S(1)=01dtt4+1letdecomposeF(t)=1t4+1F(t)=1(t2+1)22t2=1(t2+2t+1)(t22t+1)=at+bt2+2t+1+ct+dt22t+1F(t)=F(t)at+bt22t+1+bt+ct2+2t+1=F(t)c=aandd=bF(t)=at+bt2+2t+1+at+bt22t+1F(0)=1=2bb=12F(1)=12=a+b2+2+a+b2212=(22)(a+12)+(2+2)(a+12)222a+12(4)=122a=1a=122F(t)=t22+12t2+2t+1+t22+12t22t+1=122{t+2t2+2t+1+t+2t22t+1}01dtt4+1=24{01t+2t2+2t+1dt01t2t22t+1}=24{12012t+2+2t2+2t+1dt12012t22t22t+1dt}=28{[ln(t2+2t+1)]01[ln(t22t+1)]01+201dtt2+2t+1+201dtt22t+1}=28{ln(2+2)ln(22)}+14{01dtt2+2t+1+01dtt22t+1}but01dtt2+2t+1=01dtt2+222t+12+12=01dt(t+12)2+12=t+12=u211+2du212(1+u2)=211+2duu=2{arctan(2+1)π4}01dtt22t+1=01dt(t12)2+12=t12=u2121du212(1+u2)=2{arctan(21)+π4}01dtt4+1=28ln(2+222)+24{arctan(2+1)+arctan(21)}butarctan(21)=arctan(12+1)=π2arctan(2+1)01dtt4+1=28ln(2+222)+π28n=0(1)n4n+1=28ln(2+222)+π28.

Answered by Smail last updated on 26/Jan/19

(1/(1−x))=Σ_(n=0) ^∞ x^n   So (1/(1+x^4 ))=Σ_(n=0) ^∞ (−1)^n x^(4n)   let p(x)=∫_0 ^x (dt/(1+t^4 ))=Σ_(n=0) ^∞ (−1)^n ∫_0 ^x t^(4n) dt=Σ_(n=0) ^∞ (((−1)^n )/(4n+1))x^(4n+1)   p(1)=Σ_(n=0) ^∞ (((−1)^n )/(4n+1))  p(x)=∫_0 ^x (dt/(1+t^4 ))=∫_0 ^x (dt/((t^2 +(√2)t+1)(t^2 −(√2)t+1)))  (1/(1+t^4 ))=((at+b)/(t^2 +(√2)t+1))+((ct+d)/(t^2 −(√2)t+1))  a=−c=((√2)/4)  ;  d=b=(1/2)  p(x)=((√2)/4)∫_0 ^x (((t+(√2))/(t^2 +(√2)t+1))−((t−(√2))/(t^2 −(√2)t+1)))dt  p(1)=((√2)/2)∫_0 ^1 (((t+(√2))/(((√2)t+1)^2 +1))−((t−(√2))/(((√2)t−1)^2 +1)))dt  u=(√2)t+1 ⇒du=(√2)dt  y=(√2)t−1⇒dy=(√2)dt  p(1)=((√2)/4)(∫_1 ^((√2)+1) ((u+1)/(u^2 +1))dy−∫_(−1) ^((√2)−1) ((y−1)/(y^2 +1))dy)  =((√2)/4)([(1/2)ln(u^2 +1)+tan^(−1) (u)]_1 ^((√2)+1) −[(1/2)ln(y^2 +1)−tan^(−1) (y)]_(−1) ^((√2)−1) )  =((√2)/4)((1/4)ln2+(1/2)ln((√2)+1)+tan^(−1) ((√2)+1)−(π/4)−((1/4)ln(2)+(1/2)ln((√2)−1)−tan^(−1) ((√2)−1)−(π/4)))  =((√2)/4)(ln((√2)+1)+tan^(−1) ((√2)+1)+tan^(−1) ((√2)−1))  =((√2)/4)(ln((√2)+1)+((3π)/8)+(π/8))  Σ_(n=0) ^∞ (((−1)^n )/(4n+1))=p(1)=((√2)/4)(ln((√2)+1)+(π/2))

11x=n=0xnSo11+x4=n=0(1)nx4nletp(x)=0xdt1+t4=n=0(1)n0xt4ndt=n=0(1)n4n+1x4n+1p(1)=n=0(1)n4n+1p(x)=0xdt1+t4=0xdt(t2+2t+1)(t22t+1)11+t4=at+bt2+2t+1+ct+dt22t+1a=c=24;d=b=12p(x)=240x(t+2t2+2t+1t2t22t+1)dtp(1)=2201(t+2(2t+1)2+1t2(2t1)2+1)dtu=2t+1du=2dty=2t1dy=2dtp(1)=24(12+1u+1u2+1dy121y1y2+1dy)=24([12ln(u2+1)+tan1(u)]12+1[12ln(y2+1)tan1(y)]121)=24(14ln2+12ln(2+1)+tan1(2+1)π4(14ln(2)+12ln(21)tan1(21)π4))=24(ln(2+1)+tan1(2+1)+tan1(21))=24(ln(2+1)+3π8+π8)n=0(1)n4n+1=p(1)=24(ln(2+1)+π2)

Commented by maxmathsup by imad last updated on 26/Jan/19

thank you sir .

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com