Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 53811 by ajfour last updated on 26/Jan/19

Commented by ajfour last updated on 26/Jan/19

Find u_(min)  and corresponding θ for   this to be possible.  (e is the coefficient of restitution  for collision of ball with ground   and with wall as well.)

Finduminandcorrespondingθforthistobepossible.(eisthecoefficientofrestitutionforcollisionofballwithgroundandwithwallaswell.)

Answered by mr W last updated on 27/Jan/19

at point on ground:  v_(1,x,i) =v_(1,x,f) =u cos θ  v_(1,y,i) =u sin θ  v_(1,y,f) =eu sin θ    at point on wall:  v_(2,x,i) =v_(1,x,f) =u cos θ  t=(b/v_(2,x,f) )=(b/(u cos θ))  v_(2,y,i) =v_(1,y,f) −gt=eu sin θ−((gb)/(u cos θ))  h=v_(1,y,f) t−(1/2)gt^2 =eu sin θ×(b/(u cos θ))−(g/2)((b/(u cos θ)))^2   ⇒h=eb tan θ−((gb^2 )/(2u^2 cos^2  θ))  v_(2,x,f) =ev_(2,x,i) =eu cos θ  v_(2,y,f) =v_(2,y,i) =eu sin θ−((gb)/(u cos θ))    at point on ground again:  t=(b/v_(2,x,f) )=(b/(eu cos θ))  −h=v_(2,y,f) t−(1/2)gt^2 =(eu sin θ−((gb)/(u cos θ)))(b/(eu cos θ))−(g/2)((b/(eu cos θ)))^2   ⇒h=−b tan θ+((gb^2 )/(u^2  cos^2  θ))((1/e)+(1/(2e^2 )))    ⇒eb tan θ−((gb^2 )/(2u^2 cos^2  θ))=−b tan θ+((gb^2 )/(u^2  cos^2  θ))((1/e)+(1/(2e^2 )))  ⇒(e+1)tan θ=((gb)/(u^2  cos^2  θ))((1/2)+(1/e)+(1/(2e^2 )))  ⇒(e+1)tan θ=(((1+tan^2  θ)gb)/(2u^2 ))(((1+e)/e))^2   ⇒u^2 =((gb)/2)(((1+e)/e^2 ))(tan θ+(1/(tan θ)))  since tan θ+(1/(tan θ))≥2 (“=”is at θ=45°)  ⇒u_(min) ^2 =gb(((1+e)/e^2 ))  ⇒u_(min) =(1/e)(√((1+e)gb))  at θ=45°    ============  alternative way:  after rebound from the ground and  back:  t=(b/(u cos θ))+(b/(eu cos θ))=(((1+e)b)/(eu cos θ))  0=eu sin θ t−(1/2)gt^2   ⇒eu sin θ=(1/2)gt=(((1+e)gb)/(2eu cos θ))  ⇒u^2 =(((1+e)gb)/(e^2  sin 2θ))  ⇒u=(1/e)(√(((1+e)gb)/(sin 2θ)))  ⇒u_(min) =((√((1+e)gb))/e) at θ=45°

atpointonground:v1,x,i=v1,x,f=ucosθv1,y,i=usinθv1,y,f=eusinθatpointonwall:v2,x,i=v1,x,f=ucosθt=bv2,x,f=bucosθv2,y,i=v1,y,fgt=eusinθgbucosθh=v1,y,ft12gt2=eusinθ×bucosθg2(bucosθ)2h=ebtanθgb22u2cos2θv2,x,f=ev2,x,i=eucosθv2,y,f=v2,y,i=eusinθgbucosθatpointongroundagain:t=bv2,x,f=beucosθh=v2,y,ft12gt2=(eusinθgbucosθ)beucosθg2(beucosθ)2h=btanθ+gb2u2cos2θ(1e+12e2)ebtanθgb22u2cos2θ=btanθ+gb2u2cos2θ(1e+12e2)(e+1)tanθ=gbu2cos2θ(12+1e+12e2)(e+1)tanθ=(1+tan2θ)gb2u2(1+ee)2u2=gb2(1+ee2)(tanθ+1tanθ)sincetanθ+1tanθ2(=isatθ=45°)umin2=gb(1+ee2)umin=1e(1+e)gbatθ=45°============alternativeway:afterreboundfromthegroundandback:t=bucosθ+beucosθ=(1+e)beucosθ0=eusinθt12gt2eusinθ=12gt=(1+e)gb2eucosθu2=(1+e)gbe2sin2θu=1e(1+e)gbsin2θumin=(1+e)gbeatθ=45°

Commented by ajfour last updated on 26/Jan/19

thanks  Sir. Beautiful result, isn′t ?

thanksSir.Beautifulresult,isnt?

Commented by mr W last updated on 26/Jan/19

it′s indeed a very nice question!

itsindeedaverynicequestion!

Commented by mr W last updated on 26/Jan/19

that′s it! thank you for checking sir!

thatsit!thankyouforcheckingsir!

Commented by mr W last updated on 26/Jan/19

as children we often tried to play  this with a tennis ball to see if we could  get the ball back to the same point on the  ground.

aschildrenweoftentriedtoplaythiswithatennisballtoseeifwecouldgettheballbacktothesamepointontheground.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com