Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 53961 by maxmathsup by imad last updated on 27/Jan/19

let ϕ(x) =((arctan(2x))/(1−x^2 ))  1) calculate ϕ^((n)) (x)   2) calculate ϕ^((n)) (0) anddevelpp ϕ at integr serie

letφ(x)=arctan(2x)1x21)calculateφ(n)(x)2)calculateφ(n)(0)anddevelppφatintegrserie

Commented by maxmathsup by imad last updated on 06/Feb/19

1) we have ϕ(x)=(1/2)arctan(2x){(1/(1−x)) +(1/(1+x))) =(1/2) ((arctan(2x))/(1−x)) +(1/2) ((arctan(2x))/(1+x))  =W(x) −H(x) with W(x)=(1/2) ((arctan(2x))/(x+1)) and H(x)=(1/2) ((arctan(2x))/(x−1))  ⇒ ϕ^((n)) (x)=W^((n)) (x)−H^((n)) (x)   leibniz formula give  W^((n)) (x)=Σ_(k=0) ^n  C_n ^k   (arctan(2x))^((k)) ((1/(x+1)))^((n−k))   but   ((1/(x+1)))^((n−k)) =(((−1)^(n−k) (n−k)!)/((x+1)^(n−k+1) ))  we have  (arctan(2x))^′  =(2/(1+4x^2 )) ⇒ (arctan(2x))^((k))  =2((1/(4x^2  +1)))^((k−1))   =−i { (1/(2x−i)) −(1/(2x+i))}^((k−1))  =i{(1/(2(x+(i/2)))) −(1/(2(x−(i/2))))}^((k−1))   =(i/2){  (((−1)^(k−1) (k−1)!)/((x+(i/2))^k )) −(((−1)^(k−1) (k−1)!)/((x−(i/2))^k ))}  =(i/2)(−1)^(k−1) (k−1)!{ (((x−(i/2))^k −(x+(i/2))^k )/((x^2  +(1/4))^k ))} ⇒  W^((n)) (x) = arctan(2x)(((−1)^n n!)/((x+1)^(n+1) )) +Σ_(k=1) ^n  C_n ^k (i/2)(−1)^(k−1) (k−1)!{(((x−(i/2))^k −(x+(i/2))^k )/((x^2  +(1/4))^k ))}(((−1)^(n−k) (n−k)!)/((x+1)^(n−k+1) ))  .  =(((−1)^n n!)/((x+1)^(n+1) )) arctan(2x) −Σ_(k=1) ^n   ((n!)/k) (−1)^k ( (( Im(x+(i/2))^k )/((x^2  +(1/4))^k ))) (1/((x+1)^(n−k+1) )) .

1)wehaveφ(x)=12arctan(2x){11x+11+x)=12arctan(2x)1x+12arctan(2x)1+x=W(x)H(x)withW(x)=12arctan(2x)x+1andH(x)=12arctan(2x)x1φ(n)(x)=W(n)(x)H(n)(x)leibnizformulagiveW(n)(x)=k=0nCnk(arctan(2x))(k)(1x+1)(nk)but(1x+1)(nk)=(1)nk(nk)!(x+1)nk+1wehave(arctan(2x))=21+4x2(arctan(2x))(k)=2(14x2+1)(k1)=i{12xi12x+i}(k1)=i{12(x+i2)12(xi2)}(k1)=i2{(1)k1(k1)!(x+i2)k(1)k1(k1)!(xi2)k}=i2(1)k1(k1)!{(xi2)k(x+i2)k(x2+14)k}W(n)(x)=arctan(2x)(1)nn!(x+1)n+1+k=1nCnki2(1)k1(k1)!{(xi2)k(x+i2)k(x2+14)k}(1)nk(nk)!(x+1)nk+1.=(1)nn!(x+1)n+1arctan(2x)k=1nn!k(1)k(Im(x+i2)k(x2+14)k)1(x+1)nk+1.

Commented by maxmathsup by imad last updated on 06/Feb/19

also we have   H^((n)) (x) =(((−1)^n n!)/((x−1)!)) arctan(2x)−Σ_(k=1) ^n  n!(((−1)^k )/k) ((Im(x+(i/2))^k )/((x^2  +(1/4))^k (x−1)^(n−k +1) )) .  ϕ^((n)) (0) =W^((n)) (0)−H^((n)) (0)   =n! Σ_(k=1) ^n   (((−1)^(k−1) )/k)   ((Im((i^k /2^k )))/(((1/4))^k )) −(n! Σ_(k=1) ^n  (((−1)^(k−1) )/k) ((Im((i^k /2^k )))/(((1/4))^k ))(−1)^(n−k +1)   =n!{Σ_(k=1) ^n   (((−1)^(k−1) )/k) 4^(−k)  (1/2^k )sin(((kπ)/2))−Σ_(k=1) ^n  (−1)^n  4^(−k)  (1/2^k )sin(((kπ)/2))} .

alsowehaveH(n)(x)=(1)nn!(x1)!arctan(2x)k=1nn!(1)kkIm(x+i2)k(x2+14)k(x1)nk+1.φ(n)(0)=W(n)(0)H(n)(0)=n!k=1n(1)k1kIm(ik2k)(14)k(n!k=1n(1)k1kIm(ik2k)(14)k(1)nk+1=n!{k=1n(1)k1k4k12ksin(kπ2)k=1n(1)n4k12ksin(kπ2)}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com