All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 53965 by maxmathsup by imad last updated on 28/May/19
solve(x+1)y″+(2−3x2)y′=xsin(x)lety′=zso(e)⇔(x+1)z′+(2−3x2)z=xsinx(e)letfirstfindz(he)→(x+1)z′+(2−3x2)z=0⇒(x+1)z′=(3x2−2)z⇒z′z=3x2−2x+1⇒ln∣z∣=∫3x2−2x+1dx+c=∫3(x2−1)+1x+1+c=∫3(x−1)dx+∫dxx+1+c=3(x22−x)+ln∣x+1∣+c⇒z=K∣x+1∣e32x2−3xsolutionon]−1,+∞[⇒z(x)=K(x+1)e32x2−3xmvcmethodgivez′=K′(x+1)e32x2−3x+K{e32x2−3x+(x+1)(3x−3)e32x2−3x}={K′(x+1)+K+3K(x+1)(x−1)}e32x2−3x(e)⇒{(x+1)2K′+K(x+1)+3K(x+1)2(x−1)}e32x2−3x(2−3x2)K(x+1)e32x2−3x=xsinx⇒(x+1)K′+K+3K(x2−1)+K(2−3x2)=xsinxx+1⇒(x+1)K′+K−K=xsinxx+1⇒K′=xsinx(x+1)2⇒K(x)=∫xsinx(x+1)2dx+c0⇒z(x)=(x+1)e32x2−3x{∫xsinx(x+1)2dx+c0}=c0(x+1)e32x2−3x+(x+1)e32x2−3x∫.xtsint(t+1)2dtwehavey′(x)=z(x)⇒y(x)=∫z(x)dx+λ⇒y(x)=∫c0(x+1)e32x2−3xdx+∫{(x+1)e32x2−3x∫.xtsint(t+1)2dt}dx+λ.
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
dydx=p(x+1)dpdx+(2−3x2)p=xsinxdpdx+2−3x2x+1p=xsinxx+1I.F=e∫2−3x2x+1dx=e∫[(−3x+3)+−1x+1]dxe−3x22+3x−ln(x+1)e−3x22+3x×e−ln(x+1)e−3x22+3x×1x+1e−3x22+3x×1x+1dpdx+2−3x2x+1p×1x+1×e−3x22+3x=xsinxx+1×e−3x22+3x×1x+1ddx(p×e−3x22+3xx+1)=xsinx×e−3x22+3x(x+1)2∫d(p×e−3x22+3xx+1)=∫xsinx×e−3x22+3x(x+1)2dxLHS=∫d(p×e−3x22+3xx+1)=p×e−3x22+3xx+1Waitpls...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com