Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 53965 by maxmathsup by imad last updated on 28/May/19

solve  (x+1)y^(′′)  +(2−3x^2 )y^′  =xsin(x)  let y^′ =z   so (e) ⇔(x+1)z^′  +(2−3x^2 )z =xsinx(e) let first find z  (he) →(x+1)z^′  +(2−3x^2 )z =0 ⇒(x+1)z^′  =(3x^2 −2)z ⇒(z^′ /z) =((3x^2 −2)/(x+1)) ⇒  ln∣z∣ = ∫  ((3x^2 −2)/(x+1)) dx +c  =∫ ((3(x^2 −1)+1)/(x+1))+c =∫3(x−1)dx +∫ (dx/(x+1)) +c  =3((x^2 /2)−x)+ln∣x+1∣ +c ⇒z =K∣x+1∣e^((3/2)x^2 −3x)   solution on]−1,+∞[ ⇒  z(x) =K(x+1) e^((3/2)x^2 −3x)    mvc method give  z^′ =K^′ (x+1)e^((3/2)x^2 −3x)   +K{  e^((3/2)x^2 −3x)   +(x+1)(3x−3) e^((3/2)x^2 −3x) }  ={ K^′ (x+1) + K +3K(x+1)(x−1) } e^((3/2)x^2 −3x)   (e) ⇒{(x+1)^2 K^′  +K(x+1) +3K(x+1)^2 (x−1)} e^((3/2)x^2 −3x)   (2−3x^2 )K(x+1)e^((3/2)x^2 −3x)   =xsinx ⇒  (x+1)K^′  +K +3K(x^2 −1) +K(2−3x^2 ) =((xsinx)/(x+1)) ⇒  (x+1)K^′  +K −K =((xsinx)/(x+1)) ⇒K^′  =((xsinx)/((x+1)^2 )) ⇒  K(x) =∫   ((xsinx)/((x+1)^2 ))dx +c_0  ⇒z(x) =(x+1)e^((3/2)x^2 −3x) { ∫  ((xsinx)/((x+1)^2 ))dx +c_0 }  =c_0 (x+1) e^((3/2)x^2 −3x)   +(x+1)e^((3/2)x^2 −3x)  ∫_. ^x    ((tsint)/((t+1)^2 )) dt  we have y^′ (x)=z(x) ⇒y(x) =∫ z(x)dx +λ ⇒  y(x) =∫ c_0 (x+1)e^((3/2)x^2 −3x) dx +∫  {(x+1)e^((3/2)x^2 −3x)  ∫_. ^x   ((tsint)/((t+1)^2 ))dt}dx +λ .

solve(x+1)y+(23x2)y=xsin(x)lety=zso(e)(x+1)z+(23x2)z=xsinx(e)letfirstfindz(he)(x+1)z+(23x2)z=0(x+1)z=(3x22)zzz=3x22x+1lnz=3x22x+1dx+c=3(x21)+1x+1+c=3(x1)dx+dxx+1+c=3(x22x)+lnx+1+cz=Kx+1e32x23xsolutionon]1,+[z(x)=K(x+1)e32x23xmvcmethodgivez=K(x+1)e32x23x+K{e32x23x+(x+1)(3x3)e32x23x}={K(x+1)+K+3K(x+1)(x1)}e32x23x(e){(x+1)2K+K(x+1)+3K(x+1)2(x1)}e32x23x(23x2)K(x+1)e32x23x=xsinx(x+1)K+K+3K(x21)+K(23x2)=xsinxx+1(x+1)K+KK=xsinxx+1K=xsinx(x+1)2K(x)=xsinx(x+1)2dx+c0z(x)=(x+1)e32x23x{xsinx(x+1)2dx+c0}=c0(x+1)e32x23x+(x+1)e32x23x.xtsint(t+1)2dtwehavey(x)=z(x)y(x)=z(x)dx+λy(x)=c0(x+1)e32x23xdx+{(x+1)e32x23x.xtsint(t+1)2dt}dx+λ.

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

(dy/dx)=p  (x+1)(dp/dx)+(2−3x^2 )p=xsinx  (dp/dx)+((2−3x^2 )/(x+1))p=((xsinx)/(x+1))  I.F=e^(∫((2−3x^2 )/(x+1))dx) =e^(∫[(−3x+3)+((−1)/(x+1))]dx)   e^(((−3x^2 )/2)+3x−ln(x+1))   e^(((−3x^2 )/2)+3x) ×e^(−ln(x+1))   e^(((−3x^2 )/2)+3x) ×(1/(x+1))  e^(((−3x^2 )/2)+3x) ×(1/(x+1))(dp/dx)+((2−3x^2 )/(x+1))p×(1/(x+1))×e^(((−3x^2 )/2)+3x) =((xsinx)/(x+1))×e^(−((3x^2 )/2)+3x) ×(1/(x+1))  (d/dx)(p×(e^(((−3x^2 )/2)+3x) /(x+1)))=((xsinx×e^(((−3x^2 )/2)+3x) )/((x+1)^2 ))  ∫d(p×(e^(−((3x^2 )/2)+3x) /(x+1)))=∫((xsinx×e^(((−3x^2 )/2)+3x) )/((x+1)^2 ))dx  LHS=∫d(p×(e^(−((3x^2 )/2)+3x) /(x+1)))=p×(e^(−((3x^2 )/2)+3x) /(x+1))  Wait pls...

dydx=p(x+1)dpdx+(23x2)p=xsinxdpdx+23x2x+1p=xsinxx+1I.F=e23x2x+1dx=e[(3x+3)+1x+1]dxe3x22+3xln(x+1)e3x22+3x×eln(x+1)e3x22+3x×1x+1e3x22+3x×1x+1dpdx+23x2x+1p×1x+1×e3x22+3x=xsinxx+1×e3x22+3x×1x+1ddx(p×e3x22+3xx+1)=xsinx×e3x22+3x(x+1)2d(p×e3x22+3xx+1)=xsinx×e3x22+3x(x+1)2dxLHS=d(p×e3x22+3xx+1)=p×e3x22+3xx+1Waitpls...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com