All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 53966 by maxmathsup by imad last updated on 27/Jan/19
letf(x)=xsinx,2πperiodicevendeveloppfatFourierserie.
Commented by maxmathsup by imad last updated on 30/Jan/19
f(x)=a02+∑n=1∞ancos(nx)andan=2T∫[T]f(x)cos(nx)dx=22π∫−ππxsin(x)cos(nx)dx=2π∫0πxsin(x)cos(nx)dxbutsin(a+b)=sinacosb+cosasinbsin(a−b)=sinacosb−cosasinb⇒sinacosb=12{sin(a+b)+sin(a−b)}⇒π2an=12∫0πx{sin(n+1)x−sin(n−1)x}dx⇒πan=∫0πxsin(n+1)xdx−∫0πxsin(n−1)xdxletfindI=∫0πxsin(αx)dxbypartsI=[−xαcos(αx)]0π−∫0π−1αcos(αx)dx=−1α[xcos(αx)]0π+1α[1αsin(αx)]0π=−παcos(πα)+1α2sin(απ)⇒πan=−πn+1(−1)n+1−(−πn−1(−1)n−1)=π(−1)nn+1−π(−1)nn−1=π(−1)n{1n+1−1n−1}=−2π(−1)nn2−1=2π(−1)n−1n2−1withn⩾2a0=2π∫0πxsin(x)dx=2π{π}=2⇒a02=1π2a1=∫0πxsin(2x)dx=−π2⇒a1=−1⇒xsin(x)=2∑n=2∞(−1)n−1n2−1cos(nx).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com