Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53966 by maxmathsup by imad last updated on 27/Jan/19

let f(x) =xsinx ,2π periodic even  developp f at Fourier serie .

letf(x)=xsinx,2πperiodicevendeveloppfatFourierserie.

Commented by maxmathsup by imad last updated on 30/Jan/19

f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  and a_n =(2/T) ∫_([T])   f(x) cos(nx)dx  =(2/(2π)) ∫_(−π) ^π  xsin(x) cos(nx)dx =(2/π) ∫_0 ^π  x sin(x)cos(nx) dx  but  sin(a+b) =sina cosb +cosa sinb   sin(a−b)=sina cosb −cosa sinb ⇒sina cosb=(1/2){sin(a+b)+sin(a−b)} ⇒  (π/2) a_n =(1/2) ∫_0 ^π  x{sin(n+1)x−sin(n−1)x}dx ⇒  π a_n =∫_0 ^π x sin(n+1)x dx −∫_0 ^π  x sin(n−1)xdx let find  I=∫_0 ^π  x sin(αx)dx  by parts I =[−(x/α)cos(αx)]_0 ^π  −∫_0 ^π  −(1/α) cos(αx)dx  =−(1/α)[ xcos(αx)]_0 ^π   +(1/α)[(1/α)sin(αx)]_0 ^π  =−(π/α) cos(πα) +(1/α^2 ) sin(απ) ⇒  πa_n =−(π/(n+1))(−1)^(n+1)  −(−(π/(n−1))(−1)^(n−1) ) =((π(−1)^n )/(n+1)) −((π(−1)^n )/(n−1))  =π(−1)^n {(1/(n+1)) −(1/(n−1))} =((−2π(−1)^n )/(n^2 −1)) =((2π(−1)^(n−1) )/(n^2 −1))  with n≥2  a_0 =(2/π) ∫_0 ^π  xsin(x)dx =(2/π){π}=2 ⇒(a_0 /2) =1  (π/2) a_1 =∫_0 ^π  xsin(2x)dx =−(π/2) ⇒a_1 =−1 ⇒   xsin(x) =2Σ_(n=2) ^∞   (((−1)^(n−1) )/(n^2 −1)) cos(nx).

f(x)=a02+n=1ancos(nx)andan=2T[T]f(x)cos(nx)dx=22πππxsin(x)cos(nx)dx=2π0πxsin(x)cos(nx)dxbutsin(a+b)=sinacosb+cosasinbsin(ab)=sinacosbcosasinbsinacosb=12{sin(a+b)+sin(ab)}π2an=120πx{sin(n+1)xsin(n1)x}dxπan=0πxsin(n+1)xdx0πxsin(n1)xdxletfindI=0πxsin(αx)dxbypartsI=[xαcos(αx)]0π0π1αcos(αx)dx=1α[xcos(αx)]0π+1α[1αsin(αx)]0π=παcos(πα)+1α2sin(απ)πan=πn+1(1)n+1(πn1(1)n1)=π(1)nn+1π(1)nn1=π(1)n{1n+11n1}=2π(1)nn21=2π(1)n1n21withn2a0=2π0πxsin(x)dx=2π{π}=2a02=1π2a1=0πxsin(2x)dx=π2a1=1xsin(x)=2n=2(1)n1n21cos(nx).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com