Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53967 by maxmathsup by imad last updated on 27/Jan/19

1)calculate A_t =∫_0 ^∞  e^(−xt)  sinxdx  with x>0  2) by using Fubuni theorem find the value of ∫_0 ^∞   ((sinx)/x)dx .

1)calculateAt=0extsinxdxwithx>0 2)byusingFubunitheoremfindthevalueof0sinxxdx.

Commented bymaxmathsup by imad last updated on 28/Jan/19

1) we have A_t =Im(∫_0 ^∞  e^(−xt)  e^(ix) dx) =Im(∫_0 ^∞  e^((i−t)x) dx)  ∫_0 ^∞   e^((i−t)x) dx =[(1/(i−x)) e^((i−t)x) ]_(x=0) ^(x=+∞)  = −(1/(i−t)) =(1/(t−i)) =((t+i)/(t^2  +1)) ⇒  A_t = (1/(t^2  +1))  2)  we have ∫_0 ^∞  A_t dt =∫_0 ^∞   (dt/(t^2  +1)) =[arctant]_0 ^(+∞)  =(π/2)  and by fubini  ∫_0 ^∞  A_t dt =∫_0 ^∞ (∫_0 ^∞  e^(−xt)  sinxdx)dt =∫_0 ^∞  (∫_0 ^∞  e^(−xt) dt)sinxdx  =∫_0 ^∞  ([−(1/x) e^(−xt) ]_(t=0) ^(t=+∞) )sinx dx =∫_0 ^∞  ((sinx)/x) dx ⇒  ∫_0 ^∞   ((sinx)/x) dx =(π/2) .

1)wehaveAt=Im(0exteixdx)=Im(0e(it)xdx) 0e(it)xdx=[1ixe(it)x]x=0x=+=1it=1ti=t+it2+1 At=1t2+1 2)wehave0Atdt=0dtt2+1=[arctant]0+=π2andbyfubini 0Atdt=0(0extsinxdx)dt=0(0extdt)sinxdx =0([1xext]t=0t=+)sinxdx=0sinxxdx 0sinxxdx=π2.

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

B_t =∫_0 ^∞ e^(−xt) cosxdx  A_t =∫_0 ^∞ e^(−xt) sinxdx  B_t +iA_t =∫_0 ^∞ e^(−xt) (cosx+isinx)dx  B_t +iA_t =∫_0 ^∞ e^(−xt) .e^(ix) dx=∫_0 ^∞ e^(−xt+ix) dx  =∫_0 ^∞ e^(x(−t+i)) dx=∣(e^(x(−t+i)) /(−t+i))∣_0 ^∞   =∣(e^(−x(t−i)) /(−t+i))∣_0 ^∞ =((e^(−∞(t−i)) −e^0 )/(−t+i))=((−1)/(−t+i))=(1/(t−i))  =((t+i)/(t^2 +1))=(t/(t^2 +1))+i×(1/(t^2 +1))  so B_t =(t/(t^2 +1))   A_t =(1/(t^2 +1))

Bt=0extcosxdx At=0extsinxdx Bt+iAt=0ext(cosx+isinx)dx Bt+iAt=0ext.eixdx=0ext+ixdx =0ex(t+i)dx=∣ex(t+i)t+i0 =∣ex(ti)t+i0=e(ti)e0t+i=1t+i=1ti =t+it2+1=tt2+1+i×1t2+1 soBt=tt2+1At=1t2+1

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

C_t =∫_0 ^∞ e^(−xt)  ((sinx)/x)dx  (dC_t /dt)=∫_0 ^∞ (∂/∂t)(((e^(−xt) sinx)/x))dx          =∫_0 ^∞ ((e^(−xt) ×−x×sinx)/x)dx            =−∫_0 ^∞ e^(−xt) sinxdx=−A_t   (dC_t /dt)=−(1/(t^2 +1))  −dC_t =(dt/(t^2 +1))  −C_t =tan^(−1) (t)+k  k=−C_t −tan^(−1) (t)  when t→∞  C_t →0  and tan^(−1) (t)→(π/2)  so k=−(π/2)  −C_t =tan^(−1) (t)−(π/2)  we have to find  ∫_0 ^∞ ((sinx)/x)dx  we know that  −∫_0 ^∞ e^(−xt) ((sinx)/x)dx=tan^(−1) (t)−(π/2)    now put t=0 botb side  −∫_0 ^∞ ((sinx)/x)=tan^(−1) (0)−(π/2)  so ∫_0 ^∞ ((sinx)/x)=(π/2)  proved

Ct=0extsinxxdx dCtdt=0t(extsinxx)dx =0ext×x×sinxxdx =0extsinxdx=At dCtdt=1t2+1 dCt=dtt2+1 Ct=tan1(t)+k k=Cttan1(t) whentCt0andtan1(t)π2 sok=π2 Ct=tan1(t)π2 wehavetofind0sinxxdx weknowthat 0extsinxxdx=tan1(t)π2 nowputt=0botbside 0sinxx=tan1(0)π2 so0sinxx=π2proved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com