Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 54033 by qw last updated on 28/Jan/19

∫_( 0) ^1   (√((1−x)/(1+x))) dx =

101x1+xdx=

Commented by maxmathsup by imad last updated on 29/Jan/19

let I =∫_0 ^1 (√((1−x)/(1+x)))dx  let use the chan. (√((1−x)/(1+x)))=t ⇒((1−x)/(1+x)) =t^2  ⇒  1−x =t^2  +t^2 x ⇒1−t^2 =(1+t^2 )x  ⇒x =((1−t^2 )/(1+t^2 )) ⇒ (dx/dt) =((−2t(1+t^2 )−(1−t^2 )(2t))/((1+t^2 )^2 ))  =((−2t−2t^3 −2t +2t^3 )/((1+t^2 )^2 )) =((−4t)/((1+t^2 )^2 )) ⇒ I = −∫_0 ^1  t(((−4t)/((1+t^2 )^2 )) )dt  =4 ∫_0 ^1   (t^2 /((1+t^2 )^2 )) dt =4{ ∫_0 ^1  ((1+t^2 −1)/((1+t^2 )^2 ))dt}=4{∫_0 ^1  (dt/(1+t^2 )) −∫_0 ^1   (dt/((1+t^2 )^2 ))} but  ∫_0 ^1  (dt/(1+t^2 )) =[arctant]_0 ^1 =(π/4)  ∫_0 ^1   (dt/((1+t^2 )^2 )) =_(t =tanθ)    ∫_0 ^(π/4)    (((1+tan^2 θ))/((1+tan^2 θ)^2 ))dθ = ∫_0 ^(π/4)   (dθ/(1+tan^2 θ))  =∫_0 ^(π/4)  cos^2 θ dθ =∫_0 ^(π/4) ((1+cos(2θ))/2) dθ =(π/8) +(1/4)[sin(2θ)]_0 ^(π/4) =(π/8) +(1/4) ⇒  I =4{(π/4) −(π/8) −(1/4)} =π−(π/2) −1 =(π/2) −1 .

letI=011x1+xdxletusethechan.1x1+x=t1x1+x=t21x=t2+t2x1t2=(1+t2)xx=1t21+t2dxdt=2t(1+t2)(1t2)(2t)(1+t2)2=2t2t32t+2t3(1+t2)2=4t(1+t2)2I=01t(4t(1+t2)2)dt=401t2(1+t2)2dt=4{011+t21(1+t2)2dt}=4{01dt1+t201dt(1+t2)2}but01dt1+t2=[arctant]01=π401dt(1+t2)2=t=tanθ0π4(1+tan2θ)(1+tan2θ)2dθ=0π4dθ1+tan2θ=0π4cos2θdθ=0π41+cos(2θ)2dθ=π8+14[sin(2θ)]0π4=π8+14I=4{π4π814}=ππ21=π21.

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

∫((√(1−x))/(√(1+x)))dx  ∫((1−x)/(√(1−x^2 )))dx  ∫(dx/(√(1−x^2 )))+(1/2)∫((d(1−x^2 ))/(√(1−x^2 )))  sin^(−1) (x)+(1/2)×(((1−x^2 )^(((−1)/2)+1) )/(1/2))+c  so required answer is  ∣sin^(−1) x+(1−x^2 )^(1/2) ∣_0 ^1   =sin^(−1) (1)+0−sin^(−1) (0)−(1−0)^(1/2)   =(π/2)−1

1x1+xdx1x1x2dxdx1x2+12d(1x2)1x2sin1(x)+12×(1x2)12+112+csorequiredanswerissin1x+(1x2)1201=sin1(1)+0sin1(0)(10)12=π21

Answered by ajfour last updated on 28/Jan/19

let x=cos 2θ  ∫_(π/4) ^(  0) tan θ(−4sin θcos θ)dθ  =2∫_0 ^(  π/4) (1−cos 2θ)dθ    = (π/2)−1 .

letx=cos2θπ/40tanθ(4sinθcosθ)dθ=20π/4(1cos2θ)dθ=π21.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com