Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 54137 by ajfour last updated on 29/Jan/19

Commented by ajfour last updated on 29/Jan/19

Centres of two spheres of radii R   r are 2a distance apart. Find a  point on the circumference of the  circle with AB as diameter from  which maximum surface area is  visible.

$${Centres}\:{of}\:{two}\:{spheres}\:{of}\:{radii}\:{R}\: \\ $$$${r}\:{are}\:\mathrm{2}{a}\:{distance}\:{apart}.\:{Find}\:{a} \\ $$$${point}\:{on}\:{the}\:{circumference}\:{of}\:{the} \\ $$$${circle}\:{with}\:{AB}\:{as}\:{diameter}\:{from} \\ $$$${which}\:{maximum}\:{surface}\:{area}\:{is} \\ $$$${visible}. \\ $$

Commented by ajfour last updated on 29/Jan/19

mrW sir, please help..

$${mrW}\:{sir},\:{please}\:{help}.. \\ $$

Answered by ajfour last updated on 29/Jan/19

Commented by mr W last updated on 29/Jan/19

AP=2a cos θ  BP=2a sin θ  cos α=(R/(BP))=(R/(2a sin θ))  cos β=(r/(AP))=(r/(2a cos θ))  A_R =2πR^2 (1−cos α)=2πR^2 (1−(R/(2a sin θ)))  A_r =2πr^2 (1−cos β)=2πr^2 (1−(r/(2a cos θ)))  A=A_R +A_r =2π{R^2 (1−(R/(2a sin θ)))+r^2 (1−(r/(2a cos θ)))}  A=2π{R^2 +r^2 −(1/(2a))((R^3 /(sin θ))+(r^3 /(cos θ)))}  let f(θ)=(R^3 /(sin θ))+(r^3 /(cos θ))  ((df(θ))/dθ)=−((R^3 cos θ)/(sin^2  θ))+((r^3 sin θ)/(cos^2  θ))=0  ⇒tan θ=(R/r)  ⇒sin θ=(R/(√(R^2 +r^2 )))  ⇒cos θ=(r/(√(R^2 +r^2 )))  ⇒A_(max) =2π(R^2 +r^2 )(1−((√(R^2 +r^2 ))/(2a)))

$${AP}=\mathrm{2}{a}\:\mathrm{cos}\:\theta \\ $$$${BP}=\mathrm{2}{a}\:\mathrm{sin}\:\theta \\ $$$$\mathrm{cos}\:\alpha=\frac{{R}}{{BP}}=\frac{{R}}{\mathrm{2}{a}\:\mathrm{sin}\:\theta} \\ $$$$\mathrm{cos}\:\beta=\frac{{r}}{{AP}}=\frac{{r}}{\mathrm{2}{a}\:\mathrm{cos}\:\theta} \\ $$$${A}_{{R}} =\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\alpha\right)=\mathrm{2}\pi{R}^{\mathrm{2}} \left(\mathrm{1}−\frac{{R}}{\mathrm{2}{a}\:\mathrm{sin}\:\theta}\right) \\ $$$${A}_{{r}} =\mathrm{2}\pi{r}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\beta\right)=\mathrm{2}\pi{r}^{\mathrm{2}} \left(\mathrm{1}−\frac{{r}}{\mathrm{2}{a}\:\mathrm{cos}\:\theta}\right) \\ $$$${A}={A}_{{R}} +{A}_{{r}} =\mathrm{2}\pi\left\{{R}^{\mathrm{2}} \left(\mathrm{1}−\frac{{R}}{\mathrm{2}{a}\:\mathrm{sin}\:\theta}\right)+{r}^{\mathrm{2}} \left(\mathrm{1}−\frac{{r}}{\mathrm{2}{a}\:\mathrm{cos}\:\theta}\right)\right\} \\ $$$${A}=\mathrm{2}\pi\left\{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}{a}}\left(\frac{{R}^{\mathrm{3}} }{\mathrm{sin}\:\theta}+\frac{{r}^{\mathrm{3}} }{\mathrm{cos}\:\theta}\right)\right\} \\ $$$${let}\:{f}\left(\theta\right)=\frac{{R}^{\mathrm{3}} }{\mathrm{sin}\:\theta}+\frac{{r}^{\mathrm{3}} }{\mathrm{cos}\:\theta} \\ $$$$\frac{{df}\left(\theta\right)}{{d}\theta}=−\frac{{R}^{\mathrm{3}} \mathrm{cos}\:\theta}{\mathrm{sin}^{\mathrm{2}} \:\theta}+\frac{{r}^{\mathrm{3}} \mathrm{sin}\:\theta}{\mathrm{cos}^{\mathrm{2}} \:\theta}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{R}}{{r}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{{R}}{\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{{r}}{\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }} \\ $$$$\Rightarrow{A}_{{max}} =\mathrm{2}\pi\left({R}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)\left(\mathrm{1}−\frac{\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }}{\mathrm{2}{a}}\right) \\ $$

Commented by mr W last updated on 29/Jan/19

Commented by ajfour last updated on 30/Jan/19

Thank you Sir. Location of P  is nicely   depicted.

$${Thank}\:{you}\:{Sir}.\:{Location}\:{of}\:{P}\:\:{is}\:{nicely}\: \\ $$$${depicted}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com