Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 54152 by ajfour last updated on 30/Jan/19

Commented by ajfour last updated on 30/Jan/19

Given arc of length L. Find radius  R such that segment area is a      (i)maximum  (ii)minimum.

$${Given}\:{arc}\:{of}\:{length}\:{L}.\:{Find}\:{radius} \\ $$$${R}\:{such}\:{that}\:{segment}\:{area}\:{is}\:{a} \\ $$$$\:\:\:\:\left({i}\right){maximum}\:\:\left({ii}\right){minimum}. \\ $$

Commented by ajfour last updated on 30/Jan/19

A=(R^2 /2)(θ−sin θ)    , where θ=(L/R)  ⇒ ((2A)/L^2 )= (1/θ)−((sin θ)/θ^2 )  (dA/dθ) = 0  ⇒ −(1/θ^2 )−((cos θ)/θ^2 )+((2sin θ)/θ^3 ) = 0  ⇒ θ(1+cos θ)=2sin θ  ⇒ θ= 0,π  ⇒  R = (L/π)  (for max. area)  while   R→∞  (for min. area)  (Thanks to MjS Sir).

$${A}=\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right)\:\:\:\:,\:{where}\:\theta=\frac{{L}}{{R}} \\ $$$$\Rightarrow\:\frac{\mathrm{2}{A}}{{L}^{\mathrm{2}} }=\:\frac{\mathrm{1}}{\theta}−\frac{\mathrm{sin}\:\theta}{\theta^{\mathrm{2}} } \\ $$$$\frac{{dA}}{{d}\theta}\:=\:\mathrm{0}\:\:\Rightarrow\:−\frac{\mathrm{1}}{\theta^{\mathrm{2}} }−\frac{\mathrm{cos}\:\theta}{\theta^{\mathrm{2}} }+\frac{\mathrm{2sin}\:\theta}{\theta^{\mathrm{3}} }\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\theta\left(\mathrm{1}+\mathrm{cos}\:\theta\right)=\mathrm{2sin}\:\theta \\ $$$$\Rightarrow\:\theta=\:\mathrm{0},\pi \\ $$$$\Rightarrow\:\:{R}\:=\:\frac{{L}}{\pi}\:\:\left({for}\:{max}.\:{area}\right) \\ $$$${while}\:\:\:{R}\rightarrow\infty\:\:\left({for}\:{min}.\:{area}\right) \\ $$$$\left({Thanks}\:{to}\:{MjS}\:{Sir}\right). \\ $$

Commented by MJS last updated on 30/Jan/19

as always you′re welcome

$$\mathrm{as}\:\mathrm{always}\:\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com