Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 54160 by ajfour last updated on 30/Jan/19

Commented by ajfour last updated on 30/Jan/19

Find maximum area of △ABC in  terms of R and r.

$${Find}\:{maximum}\:{area}\:{of}\:\bigtriangleup{ABC}\:{in} \\ $$$${terms}\:{of}\:{R}\:{and}\:{r}. \\ $$

Answered by mr W last updated on 30/Jan/19

Commented by mr W last updated on 30/Jan/19

α=(π/2)−(β/2)  ⇒2α=π−β   ..(i)  β=(π/2)−(α/2)  ⇒2β=π−α  ..(ii)  ⇒α=β=(π/3)=60°  AC=2R cos (α/2)=(√3)R  AB=2r cos (β/2)=(√3)r  ∠CAB=180°−(α/2)−(β/2)=120°  Δ_(max) =(1/2)×(√3)R×(√3)r×sin 120°  ⇒Δ_(max) =((3(√3)Rr)/4)

$$\alpha=\frac{\pi}{\mathrm{2}}−\frac{\beta}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\alpha=\pi−\beta\:\:\:..\left({i}\right) \\ $$$$\beta=\frac{\pi}{\mathrm{2}}−\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\beta=\pi−\alpha\:\:..\left({ii}\right) \\ $$$$\Rightarrow\alpha=\beta=\frac{\pi}{\mathrm{3}}=\mathrm{60}° \\ $$$${AC}=\mathrm{2}{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}=\sqrt{\mathrm{3}}{R} \\ $$$${AB}=\mathrm{2}{r}\:\mathrm{cos}\:\frac{\beta}{\mathrm{2}}=\sqrt{\mathrm{3}}{r} \\ $$$$\angle{CAB}=\mathrm{180}°−\frac{\alpha}{\mathrm{2}}−\frac{\beta}{\mathrm{2}}=\mathrm{120}° \\ $$$$\Delta_{{max}} =\frac{\mathrm{1}}{\mathrm{2}}×\sqrt{\mathrm{3}}{R}×\sqrt{\mathrm{3}}{r}×\mathrm{sin}\:\mathrm{120}° \\ $$$$\Rightarrow\Delta_{{max}} =\frac{\mathrm{3}\sqrt{\mathrm{3}}{Rr}}{\mathrm{4}} \\ $$

Commented by ajfour last updated on 30/Jan/19

yes Sir, straight and clear, thanks  again(i am quite dumb at this).

$${yes}\:{Sir},\:{straight}\:{and}\:{clear},\:{thanks} \\ $$$${again}\left({i}\:{am}\:{quite}\:{dumb}\:{at}\:{this}\right). \\ $$

Commented by mr W last updated on 30/Jan/19

i tried above to find the maximum triangle  only using logic. but we can get the  same result using calculus:  Δ=(1/2)×2R cos (α/2)×2r cos (β/2)×sin ((α/2)+(β/2))  =2Rr cos (α/2) cos (β/2) sin ((α/2)+(β/2))  ((∂(Δ))/∂α)=2Rrcos (β/2){−(1/2)sin (α/2) sin ((α/2)+(β/2))+(1/2)cos (α/2) cos ((α/2)+(β/2))}=0  sin (α/2) sin ((α/2)+(β/2))=cos (α/2) cos ((α/2)+(β/2))  ⇒tan (α/2) tan ((α/2)+(β/2))=1   ...(i)  ((∂(Δ))/∂β)=2Rrcos (α/2){−(1/2)sin (β/2) sin ((α/2)+(β/2))+(1/2)cos (β/2) cos ((α/2)+(β/2))}=0  ⇒tan (β/2) tan ((α/2)+(β/2))=1   ...(ii)  ⇒tan (α/2)=tan (β/2)  ⇒α=β  ⇒tan (α/2) tan α=1  ⇒tan (α/2) ((2 tan (α/2))/(1−tan^2  (α/2)))=1  ⇒3 tan^2  (α/2)=1  ⇒tan (α/2)=(1/(√3))  ⇒(α/2)=30°  ⇒α=β=60°

$${i}\:{tried}\:{above}\:{to}\:{find}\:{the}\:{maximum}\:{triangle} \\ $$$${only}\:{using}\:{logic}.\:{but}\:{we}\:{can}\:{get}\:{the} \\ $$$${same}\:{result}\:{using}\:{calculus}: \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{R}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}×\mathrm{2}{r}\:\mathrm{cos}\:\frac{\beta}{\mathrm{2}}×\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}{Rr}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{cos}\:\frac{\beta}{\mathrm{2}}\:\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right) \\ $$$$\frac{\partial\left(\Delta\right)}{\partial\alpha}=\mathrm{2}{Rr}\mathrm{cos}\:\frac{\beta}{\mathrm{2}}\left\{−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)=\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)=\mathrm{1}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial\left(\Delta\right)}{\partial\beta}=\mathrm{2}{Rr}\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\left\{−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\frac{\beta}{\mathrm{2}}\:\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\frac{\beta}{\mathrm{2}}\:\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)\right\}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\beta}{\mathrm{2}}\:\mathrm{tan}\:\left(\frac{\alpha}{\mathrm{2}}+\frac{\beta}{\mathrm{2}}\right)=\mathrm{1}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\mathrm{tan}\:\frac{\beta}{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\beta \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\mathrm{tan}\:\alpha=\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:\frac{\mathrm{2}\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\frac{\alpha}{\mathrm{2}}=\mathrm{30}° \\ $$$$\Rightarrow\alpha=\beta=\mathrm{60}° \\ $$

Commented by ajfour last updated on 30/Jan/19

using calculus i′d got the same,  but would you please explain your  logic to me in some more detail, Sir?

$${using}\:{calculus}\:{i}'{d}\:{got}\:{the}\:{same}, \\ $$$${but}\:{would}\:{you}\:{please}\:{explain}\:{your} \\ $$$${logic}\:{to}\:{me}\:{in}\:{some}\:{more}\:{detail},\:{Sir}? \\ $$

Commented by mr W last updated on 30/Jan/19

the logic is:  with maximum triangle  tangent at C is parallel to AB, i.e.  CP⊥AB.  tangent at B is parallel to AC, i.e.  BQ⊥AC.

$${the}\:{logic}\:{is}: \\ $$$${with}\:{maximum}\:{triangle} \\ $$$${tangent}\:{at}\:{C}\:{is}\:{parallel}\:{to}\:{AB},\:{i}.{e}. \\ $$$${CP}\bot{AB}. \\ $$$${tangent}\:{at}\:{B}\:{is}\:{parallel}\:{to}\:{AC},\:{i}.{e}. \\ $$$${BQ}\bot{AC}. \\ $$

Commented by mr W last updated on 30/Jan/19

the logic is the same as in Q53910.

$${the}\:{logic}\:{is}\:{the}\:{same}\:{as}\:{in}\:{Q}\mathrm{53910}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com