Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 54170 by ajfour last updated on 30/Jan/19

Commented by ajfour last updated on 30/Jan/19

Determine b in terms of a,p,R.

$${Determine}\:{b}\:{in}\:{terms}\:{of}\:{a},{p},{R}. \\ $$

Answered by ajfour last updated on 30/Jan/19

DF = (√((a+b)^2 −(b−a)^2 )) = 2(√(ab))  DE = (√((R−a)^2 −(a−p)^2 )) = (√((R−p)(R+p−2a)))  EF = (√((R−b)^2 −(b−p)^2 )) = (√((R−p)(R+p−2b)))  DE+EF = DF , ⇒  (√((R−p)(R+p−2a)))+(√((R−p)(R+p−2b)))                                  = 2(√(ab))  let  ((2a)/(R−p))=α ,  ((2b)/(R−p))=β ,  ((R+p)/(R−p)) = c .  ⇒ (√(c−α))+(√(c−β)) =(√(αβ))  squaring  2c−(α+β)+2(√(c^2 −(α+β)c+αβ)) =αβ  ⇒ 4(c^2 −(α+β)c+αβ)=(αβ−2c+α+β)^2   ⇒ 4c^2 −4c(α+β)+4αβ         = α^2 β^2 +4c^2 +(α+β)^2 −4cαβ                      −2αβ(α+β)−4c(α+β)  ⇒ (α−β)^2 +α^2 β^2 =2αβ(α+β+2c)  ⇒  β^2 (α^2 −2α+1)−2α(1+α+2c)+α^2 =0  β = ((α(1+α+2c)+(√((1+α+2c)^2 −α^2 (α−1)^2 )))/((α−1)^2 ))  ..

$${DF}\:=\:\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\left({b}−{a}\right)^{\mathrm{2}} }\:=\:\mathrm{2}\sqrt{{ab}} \\ $$$${DE}\:=\:\sqrt{\left({R}−{a}\right)^{\mathrm{2}} −\left({a}−{p}\right)^{\mathrm{2}} }\:=\:\sqrt{\left({R}−{p}\right)\left({R}+{p}−\mathrm{2}{a}\right)} \\ $$$${EF}\:=\:\sqrt{\left({R}−{b}\right)^{\mathrm{2}} −\left({b}−{p}\right)^{\mathrm{2}} }\:=\:\sqrt{\left({R}−{p}\right)\left({R}+{p}−\mathrm{2}{b}\right)} \\ $$$${DE}+{EF}\:=\:{DF}\:,\:\Rightarrow \\ $$$$\sqrt{\left({R}−{p}\right)\left({R}+{p}−\mathrm{2}{a}\right)}+\sqrt{\left({R}−{p}\right)\left({R}+{p}−\mathrm{2}{b}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}\sqrt{{ab}} \\ $$$${let}\:\:\frac{\mathrm{2}{a}}{{R}−{p}}=\alpha\:,\:\:\frac{\mathrm{2}{b}}{{R}−{p}}=\beta\:,\:\:\frac{{R}+{p}}{{R}−{p}}\:=\:{c}\:. \\ $$$$\Rightarrow\:\sqrt{{c}−\alpha}+\sqrt{{c}−\beta}\:=\sqrt{\alpha\beta} \\ $$$${squaring} \\ $$$$\mathrm{2}{c}−\left(\alpha+\beta\right)+\mathrm{2}\sqrt{{c}^{\mathrm{2}} −\left(\alpha+\beta\right){c}+\alpha\beta}\:=\alpha\beta \\ $$$$\Rightarrow\:\mathrm{4}\left({c}^{\mathrm{2}} −\left(\alpha+\beta\right){c}+\alpha\beta\right)=\left(\alpha\beta−\mathrm{2}{c}+\alpha+\beta\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{4}{c}^{\mathrm{2}} −\mathrm{4}{c}\left(\alpha+\beta\right)+\mathrm{4}\alpha\beta\: \\ $$$$\:\:\:\:\:\:=\:\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\mathrm{4}{c}^{\mathrm{2}} +\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}{c}\alpha\beta\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\alpha\beta\left(\alpha+\beta\right)−\mathrm{4}{c}\left(\alpha+\beta\right) \\ $$$$\Rightarrow\:\left(\alpha−\beta\right)^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta^{\mathrm{2}} =\mathrm{2}\alpha\beta\left(\alpha+\beta+\mathrm{2}{c}\right) \\ $$$$\Rightarrow \\ $$$$\beta^{\mathrm{2}} \left(\alpha^{\mathrm{2}} −\mathrm{2}\alpha+\mathrm{1}\right)−\mathrm{2}\alpha\left(\mathrm{1}+\alpha+\mathrm{2}{c}\right)+\alpha^{\mathrm{2}} =\mathrm{0} \\ $$$$\beta\:=\:\frac{\alpha\left(\mathrm{1}+\alpha+\mathrm{2}{c}\right)+\sqrt{\left(\mathrm{1}+\alpha+\mathrm{2}{c}\right)^{\mathrm{2}} −\alpha^{\mathrm{2}} \left(\alpha−\mathrm{1}\right)^{\mathrm{2}} }}{\left(\alpha−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$.. \\ $$

Commented by mr W last updated on 30/Jan/19

good solution sir!

$${good}\:{solution}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com