Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 54194 by ajfour last updated on 30/Jan/19

Commented by ajfour last updated on 31/Jan/19

If the small circles have the same  radii, find θ.     (source: ajfour)

$${If}\:{the}\:{small}\:{circles}\:{have}\:{the}\:{same} \\ $$$${radii},\:{find}\:\theta.\:\:\:\:\:\left({source}:\:{ajfour}\right) \\ $$

Answered by ajfour last updated on 30/Jan/19

Commented by mr W last updated on 31/Jan/19

how did you come to the cos θ in eqn (ii)?

$${how}\:{did}\:{you}\:{come}\:{to}\:{the}\:\mathrm{cos}\:\theta\:{in}\:{eqn}\:\left({ii}\right)?\: \\ $$

Commented by ajfour last updated on 31/Jan/19

(1/(sin (θ/2)))=((R−(2a+c))/c)=((R−a)/a)⇒=((a+c)/(a−c))                                                             ....(i)  (R−c)^2 =(a+c)^2 +(R−a)^2                         +2(R−a)(a+c)cos θ   ..(ii)  If sin (θ/2)=s  ⇒ (1/s)=((R−a)/a)   ⇒  R=((a(1+s))/s)   and since  ((a+c)/(a−c))=(1/s)       as+cs=a−c  ⇒  b= c= ((a(1−s))/(1+s))    R−c = ((a(1+s))/s)−((a(1−s))/(1+s))  ⇒ R−c = ((a(1+2s^2 +s))/(s(1+s)))  a+c = a+((a(1−s))/(1+s))  ⇒  a+c = ((2a)/(1+s))   ,   R−a = (a/s)  and of course   cos θ = 1−2s^2   using these in (ii)  (((1+2s^2 +s)^2 )/(s^2 (1+s)^2 ))=(4/((1+s)^2 ))+(1/s^2 )+(2/s)((2/(1+s)))(1−2s^2 )  ⇒ (((1+2s^2 +s)^2 )/(s^2 (1+s)^2 ))−((4s(1+s)(1−2s^2 ))/(s^2 (1+s)^2 ))                                  = ((4s^2 +(1+s)^2 )/(s^2 (1+s)^2 ))  ⇒ 1+4s^4 +s^2 +4s^2 +4s^3 +2s   −4s−4s^2 +8s^3 +8s^4 = 4s^2 +1+2s+s^2   ⇒   12s^4 +12s^3  = 4s^2 +4s  ⇒   3s^4 +3s^3 = s^2 +s  ⇒  3s^2 (s+1) = s(s+1)  ⇒  s^2 = (1/3) , s=0, s=−1  ⇒  sin (θ/2) = (1/(√3))   ⇒  θ = 2sin^(−1) ((1/(√3))) ≈ 70.53° .

$$\frac{\mathrm{1}}{\mathrm{sin}\:\left(\theta/\mathrm{2}\right)}=\frac{{R}−\left(\mathrm{2}{a}+{c}\right)}{{c}}=\frac{{R}−{a}}{{a}}\Rightarrow=\frac{{a}+{c}}{{a}−{c}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({i}\right) \\ $$$$\left({R}−{c}\right)^{\mathrm{2}} =\left({a}+{c}\right)^{\mathrm{2}} +\left({R}−{a}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}\left({R}−{a}\right)\left({a}+{c}\right)\mathrm{cos}\:\theta\:\:\:..\left({ii}\right) \\ $$$${If}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}={s} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{s}}=\frac{{R}−{a}}{{a}}\:\:\:\Rightarrow\:\:{R}=\frac{{a}\left(\mathrm{1}+{s}\right)}{{s}} \\ $$$$\:{and}\:{since}\:\:\frac{{a}+{c}}{{a}−{c}}=\frac{\mathrm{1}}{{s}} \\ $$$$\:\:\:\:\:{as}+{cs}={a}−{c} \\ $$$$\Rightarrow\:\:{b}=\:{c}=\:\frac{{a}\left(\mathrm{1}−{s}\right)}{\mathrm{1}+{s}} \\ $$$$\:\:{R}−{c}\:=\:\frac{{a}\left(\mathrm{1}+{s}\right)}{{s}}−\frac{{a}\left(\mathrm{1}−{s}\right)}{\mathrm{1}+{s}} \\ $$$$\Rightarrow\:{R}−{c}\:=\:\frac{{a}\left(\mathrm{1}+\mathrm{2}{s}^{\mathrm{2}} +{s}\right)}{{s}\left(\mathrm{1}+{s}\right)} \\ $$$${a}+{c}\:=\:{a}+\frac{{a}\left(\mathrm{1}−{s}\right)}{\mathrm{1}+{s}} \\ $$$$\Rightarrow\:\:{a}+{c}\:=\:\frac{\mathrm{2}{a}}{\mathrm{1}+{s}}\:\:\:,\:\:\:{R}−{a}\:=\:\frac{{a}}{{s}} \\ $$$${and}\:{of}\:{course}\:\:\:\mathrm{cos}\:\theta\:=\:\mathrm{1}−\mathrm{2}{s}^{\mathrm{2}} \\ $$$${using}\:{these}\:{in}\:\left({ii}\right) \\ $$$$\frac{\left(\mathrm{1}+\mathrm{2}{s}^{\mathrm{2}} +{s}\right)^{\mathrm{2}} }{{s}^{\mathrm{2}} \left(\mathrm{1}+{s}\right)^{\mathrm{2}} }=\frac{\mathrm{4}}{\left(\mathrm{1}+{s}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{{s}^{\mathrm{2}} }+\frac{\mathrm{2}}{{s}}\left(\frac{\mathrm{2}}{\mathrm{1}+{s}}\right)\left(\mathrm{1}−\mathrm{2}{s}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\frac{\left(\mathrm{1}+\mathrm{2}{s}^{\mathrm{2}} +{s}\right)^{\mathrm{2}} }{{s}^{\mathrm{2}} \left(\mathrm{1}+{s}\right)^{\mathrm{2}} }−\frac{\mathrm{4}{s}\left(\mathrm{1}+{s}\right)\left(\mathrm{1}−\mathrm{2}{s}^{\mathrm{2}} \right)}{{s}^{\mathrm{2}} \left(\mathrm{1}+{s}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{4}{s}^{\mathrm{2}} +\left(\mathrm{1}+{s}\right)^{\mathrm{2}} }{{s}^{\mathrm{2}} \left(\mathrm{1}+{s}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{1}+\mathrm{4}{s}^{\mathrm{4}} +{s}^{\mathrm{2}} +\mathrm{4}{s}^{\mathrm{2}} +\mathrm{4}{s}^{\mathrm{3}} +\mathrm{2}{s} \\ $$$$\:−\mathrm{4}{s}−\mathrm{4}{s}^{\mathrm{2}} +\mathrm{8}{s}^{\mathrm{3}} +\mathrm{8}{s}^{\mathrm{4}} =\:\mathrm{4}{s}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{s}+{s}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\:\mathrm{12}{s}^{\mathrm{4}} +\mathrm{12}{s}^{\mathrm{3}} \:=\:\mathrm{4}{s}^{\mathrm{2}} +\mathrm{4}{s} \\ $$$$\Rightarrow\:\:\:\mathrm{3}{s}^{\mathrm{4}} +\mathrm{3}{s}^{\mathrm{3}} =\:{s}^{\mathrm{2}} +{s} \\ $$$$\Rightarrow\:\:\mathrm{3}{s}^{\mathrm{2}} \left({s}+\mathrm{1}\right)\:=\:{s}\left({s}+\mathrm{1}\right) \\ $$$$\Rightarrow\:\:{s}^{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{3}}\:,\:{s}=\mathrm{0},\:{s}=−\mathrm{1} \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\: \\ $$$$\Rightarrow\:\:\theta\:=\:\mathrm{2sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\:\approx\:\mathrm{70}.\mathrm{53}°\:. \\ $$

Commented by ajfour last updated on 31/Jan/19

Commented by ajfour last updated on 31/Jan/19

(R−b)^2 =(a+b)^2 sin^2 θ+                             [(R−a)+(a+b)cos θ]^2   ⇒(R−b)^2 =(a+b)^2 +2(R−a)(a+b)cos θ  and b=c   ⇒(R−c)^2 =(a+c)^2 +2(R−a)(a+c)cos θ  will that do Sir ?

$$\left({R}−{b}\right)^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\left({R}−{a}\right)+\left({a}+{b}\right)\mathrm{cos}\:\theta\right]^{\mathrm{2}} \\ $$$$\Rightarrow\left({R}−{b}\right)^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} +\mathrm{2}\left({R}−{a}\right)\left({a}+{b}\right)\mathrm{cos}\:\theta \\ $$$${and}\:{b}={c}\: \\ $$$$\Rightarrow\left({R}−{c}\right)^{\mathrm{2}} =\left({a}+{c}\right)^{\mathrm{2}} +\mathrm{2}\left({R}−{a}\right)\left({a}+{c}\right)\mathrm{cos}\:\theta \\ $$$${will}\:{that}\:{do}\:{Sir}\:? \\ $$

Commented by mr W last updated on 31/Jan/19

thanks sir!

$${thanks}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com