Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54224 by rahul 19 last updated on 31/Jan/19

∫_0 ^( (π/4)) ((sinx+cosx)/(16+9sin2x)) dx =?

0π4sinx+cosx16+9sin2xdx=?

Commented by Meritguide1234 last updated on 01/Feb/19

⇒∫_0 ^(π/4) ((sinx+cosx)/(25−9(sinx−cosx)^2 ))dx  put sinx−cosx=t rest easy

0π/4sinx+cosx259(sinxcosx)2dxputsinxcosx=tresteasy

Commented by rahul 19 last updated on 01/Feb/19

there is a little mistake in the denominator! �� Anyways, I've understood .

Commented by maxmathsup by imad last updated on 01/Feb/19

let I =∫_0 ^(π/4)   ((sinx +cosx)/(16 +9sin(2x)))dx ⇒ I =∫_0 ^(π/4)   ((sin(x+(π/4)))/(16 +9 sin(2x)))dx  =_(x+(π/4)=t)    ∫_(π/4) ^(π/2)    ((sin(t))/(16 +9 sin(2t−(π/2))))dt =∫_(π/4) ^(π/2)  ((sin(t))/(16 −9cos(2t)))dt  =∫_(π/4) ^(π/2)  ((sint dt)/(16−9(2cos^2 t−1))) =∫_(π/4) ^(π/2)   ((sint dt)/(25−18 cos^2 t)) =_(cost=u)    ∫_(1/(√2)) ^0   ((−du)/(25−18u^2 ))  = −∫_0 ^(1/(√2))     (du/(18u^2 −25)) =−∫_0 ^(1/(√2))    (du/((3(√2)u)^2 −25)) =_(3(√2)u =5α)   −∫_0 ^(3/5)  (1/(25(u^2 −1))) ((5dα)/(3(√2)))  =−(1/(15(√2))) ∫_0 ^(3/5)   ((1/(u−1)) −(1/(u+1)))du =(1/(30(√2)))[ln∣((u+1)/(u−1))∣]_0 ^(3/5)   =(1/(30(√2))) ln∣ (((3/5)+1)/((3/5)−1))∣ =(1/(30(√2))) ln((8/2)) =((2ln(2))/(30(√2))) =((ln(2))/(15(√2)))

letI=0π4sinx+cosx16+9sin(2x)dxI=0π4sin(x+π4)16+9sin(2x)dx=x+π4=tπ4π2sin(t)16+9sin(2tπ2)dt=π4π2sin(t)169cos(2t)dt=π4π2sintdt169(2cos2t1)=π4π2sintdt2518cos2t=cost=u120du2518u2=012du18u225=012du(32u)225=32u=5α035125(u21)5dα32=1152035(1u11u+1)du=1302[lnu+1u1]035=1302ln35+1351=1302ln(82)=2ln(2)302=ln(2)152

Commented by maxmathsup by imad last updated on 01/Feb/19

error from the first line   I =∫_0 ^(π/4)   (((√2)sin(x+(π/4)))/(16+9sin(2x)))dx ⇒ I =(√2) ((ln(2))/(15(√2))) ⇒ I =((ln(2))/(15)) .

errorfromthefirstlineI=0π42sin(x+π4)16+9sin(2x)dxI=2ln(2)152I=ln(2)15.

Answered by tanmay.chaudhury50@gmail.com last updated on 31/Jan/19

∫_0 ^(π/4) ((d(sinx−cosx))/(16+9×2sinxcosx))  ∫_0 ^(π/4) ((d(sinx−cosx))/(25−9(1−2sinxcosx)))  ∫_0 ^(π/4) ((d(sinx−cosx))/(25−9(sinx−cosx)^2 ))  (1/9)∫_0 ^(π/4) ((d(sinx−cosx))/(((5/3))^2 −(sinx−cosx)^2 ))  (1/9)×(1/(2((5/3))))∣ln((((5/3)+sinx−cosx)/((5/3)−sinx+cosx)))∣_0 ^(π/4)   =(1/(30))[ln(1)−ln((((5/3)−1)/((5/3)+1)))]  =−(1/(30))ln((1/4))=(1/(30))ln4=((ln2)/(15)) rahul pls check...pls upload answer of  previous 8 inttegals you posred...

0π4d(sinxcosx)16+9×2sinxcosx0π4d(sinxcosx)259(12sinxcosx)0π4d(sinxcosx)259(sinxcosx)2190π4d(sinxcosx)(53)2(sinxcosx)219×12(53)ln(53+sinxcosx53sinx+cosx)0π4=130[ln(1)ln(53153+1)]=130ln(14)=130ln4=ln215rahulplscheck...plsuploadanswerofprevious8inttegalsyouposred...

Commented by rahul 19 last updated on 01/Feb/19

thank you sir!

Answered by Prithwish sen last updated on 31/Jan/19

= ∫_0 ^(π/4)   ((sin((π/4) − x) + cos((π/4) − x))/(16+9sin((π/2) − 2x)))dx  = ∫_0 ^(π/4) (((√(2 ))cosx)/(16 + 9 cos2x))dx  = (√2)∫_0 ^(π/4)  ((cosx)/(16+9−18sin^2 x))dx  = (√2) ∫_0 ^(π/4) ((cosx)/(25 −18sin^2 x))dx  putting , sinx = t  ∴ cosx dx =dt, x→(π/4) ⇒t→(1/(√2)) , x→0 ⇒ t→0  =(√2) ∫_0 ^(1/(√2)) (dt/(25−18t^2 ))  = ((√2)/(18)) ∫_0 ^(1/(√2)) (dt/(((5/(3(√2))))^2 −t^2 ))  = (1/(30)) ln∣((5+3(√2) t)/(5−3(√2) t))∣_0_  ^(1/(√2))   = (1/(30_ )) ln4  = (1/(15_ )) ln2

=0π4sin(π4x)+cos(π4x)16+9sin(π22x)dx=0π42cosx16+9cos2xdx=20π4cosx16+918sin2xdx=20π4cosx2518sin2xdxputting,sinx=tcosxdx=dt,xπ4t12,x0t0=2012dt2518t2=218012dt(532)2t2=130ln5+32t532t012=130ln4=115ln2

Commented by rahul 19 last updated on 01/Feb/19

thank you sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com