Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 54242 by ajfour last updated on 01/Feb/19

Answered by mr W last updated on 01/Feb/19

parabola:  y=h−(x^2 /c)  ellipse:  (x^2 /a^2 )+(((y−b)^2 )/b^2 )=1  intersection:  ((c(h−y))/a^2 )+(((y−b)^2 )/b^2 )=1  cb^2 (h−y)+a^2 (y−b)^2 =a^2 b^2   a^2 y^2 −(2a^2 +cb)by+chb^2 =0  D=(2a^2 +cb)^2 b^2 −4a^2 chb^2 =0  (2a^2 +cb)^2 −4a^2 ch=0  ⇒b=((2a)/c)((√(ch))−a)  A=πab=((2π)/c)a^2 ((√(ch))−a)  (dA/da)=0  ⇒2a(√(ch))−3a^2 =0  ⇒a=((2(√(ch)))/3)  ⇒b=(2/c)×((2(√(ch)))/3)((√(ch))−((2(√(ch)))/3))=((4h)/9)  A_(max) =πab=((8πh(√(ch)))/(27))

parabola:y=hx2cellipse:x2a2+(yb)2b2=1intersection:c(hy)a2+(yb)2b2=1cb2(hy)+a2(yb)2=a2b2a2y2(2a2+cb)by+chb2=0D=(2a2+cb)2b24a2chb2=0(2a2+cb)24a2ch=0b=2ac(cha)A=πab=2πca2(cha)dAda=02ach3a2=0a=2ch3b=2c×2ch3(ch2ch3)=4h9Amax=πab=8πhch27

Commented by ajfour last updated on 01/Feb/19

THANK YOU  SIR.

THANKYOUSIR.

Answered by ajfour last updated on 01/Feb/19

let C be origin.  eq. of parabola:   y=h−b−(x^2 /c)  let P (acos θ, bsin θ)  (dy/dx)∣_P = −((bcos θ)/(asin θ )) = −((2x)/c) =−((2acos θ)/c)  ⇒    a^2 = ((bc)/(2sin θ))     ....(i)  bsin θ = h−b−((a^2 cos^2 θ)/c)  using (i) herein     bsin θ=h−b−((bcos^2 θ)/(2sin θ))  ⇒  2bsin^2 θ=2hsin θ−2bsin θ−bcos^2 θ  ⇒ b(sin^2 θ+2sin θ+1)=2hsin θ  ⇒  b=((2hsin θ)/((1+sin θ)^2 ))     and using (i)  ⇒  a^2 =((ch)/((1+sin θ)^2 ))  ⇒  a=((√(ch))/(1+sin θ))     ⇒   A=πab = ((2πh(√(ch))sin θ)/((1+sin θ)^3 ))   .....(ii)  let  S= ((sin θ)/((1+sin θ)^3 ))  (dS/dθ)=0   ⇒  cos θ(1+sin θ)^3 =3sin θcos θ(1+sin θ)^2   ⇒  1+sin θ = 3sin θ  or     sin θ = 1/2  ⇒ S = (4/(27))     ⇒    A_(max) = ((8πh(√(ch)))/(27)) .  (parametric isn′t wrong either!)

letCbeorigin.eq.ofparabola:y=hbx2cletP(acosθ,bsinθ)dydxP=bcosθasinθ=2xc=2acosθca2=bc2sinθ....(i)bsinθ=hba2cos2θcusing(i)hereinbsinθ=hbbcos2θ2sinθ2bsin2θ=2hsinθ2bsinθbcos2θb(sin2θ+2sinθ+1)=2hsinθb=2hsinθ(1+sinθ)2andusing(i)a2=ch(1+sinθ)2a=ch1+sinθA=πab=2πhchsinθ(1+sinθ)3.....(ii)letS=sinθ(1+sinθ)3dSdθ=0cosθ(1+sinθ)3=3sinθcosθ(1+sinθ)21+sinθ=3sinθorsinθ=1/2S=427Amax=8πhch27.(parametricisntwrongeither!)

Commented by mr W last updated on 01/Feb/19

nice too!

nicetoo!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com