Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54273 by rahul 19 last updated on 01/Feb/19

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Feb/19

(df/dx)=f(x)+∫_0 ^1 f(x)dx  (df/dx)=f(x)+a  (df/(f(x)+a))=dx  ((d[f(x)+a])/(f(x)+a))=dx  ln[f(x)+a]=x+c  f(x)+a=e^(x+c)   f(0)+a=e^(0+c)   1+a=e^c   f(x)+a=e^x ×e^c   f(x)+a=e^x (1+a)  f(x)+a=e^x +ae^x   f(x)=(1+a)e^x −a  ∫_0 ^1 f(x)dx=(1+a)∫_0 ^1 e^x dx−a∫_0 ^1 dx  a=(1+a)(e−1)−a  2a=e−1+ae−a  3a−ae=e−1  a=((e−1)/(3−e))  f(x)=(1+a)e^x −a            =(1+((e−1)/(3−e)))e^x −((e−1)/(3−e))  f(x)=(2/(3−e))e^x −((e−1)/(3−e))  ∫f(x)dx=(2/(3−e))e^x +((1−e)/(3−e))x+c  so option b is answer

$$\frac{{df}}{{dx}}={f}\left({x}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$$$\frac{{df}}{{dx}}={f}\left({x}\right)+{a} \\ $$$$\frac{{df}}{{f}\left({x}\right)+{a}}={dx} \\ $$$$\frac{{d}\left[{f}\left({x}\right)+{a}\right]}{{f}\left({x}\right)+{a}}={dx} \\ $$$${ln}\left[{f}\left({x}\right)+{a}\right]={x}+{c} \\ $$$${f}\left({x}\right)+{a}={e}^{{x}+{c}} \\ $$$${f}\left(\mathrm{0}\right)+{a}={e}^{\mathrm{0}+{c}} \\ $$$$\mathrm{1}+{a}={e}^{{c}} \\ $$$${f}\left({x}\right)+{a}={e}^{{x}} ×{e}^{{c}} \\ $$$${f}\left({x}\right)+{a}={e}^{{x}} \left(\mathrm{1}+{a}\right) \\ $$$${f}\left({x}\right)+{a}={e}^{{x}} +{ae}^{{x}} \\ $$$${f}\left({x}\right)=\left(\mathrm{1}+{a}\right){e}^{{x}} −{a} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\left(\mathrm{1}+{a}\right)\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}} {dx}−{a}\int_{\mathrm{0}} ^{\mathrm{1}} {dx} \\ $$$${a}=\left(\mathrm{1}+{a}\right)\left({e}−\mathrm{1}\right)−{a} \\ $$$$\mathrm{2}{a}={e}−\mathrm{1}+{ae}−{a} \\ $$$$\mathrm{3}{a}−{ae}={e}−\mathrm{1} \\ $$$${a}=\frac{{e}−\mathrm{1}}{\mathrm{3}−{e}} \\ $$$${f}\left({x}\right)=\left(\mathrm{1}+{a}\right){e}^{{x}} −{a} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{1}+\frac{{e}−\mathrm{1}}{\mathrm{3}−{e}}\right){e}^{{x}} −\frac{{e}−\mathrm{1}}{\mathrm{3}−{e}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\mathrm{3}−{e}}{e}^{{x}} −\frac{{e}−\mathrm{1}}{\mathrm{3}−{e}} \\ $$$$\int{f}\left({x}\right){dx}=\frac{\mathrm{2}}{\mathrm{3}−{e}}{e}^{{x}} +\frac{\mathrm{1}−{e}}{\mathrm{3}−{e}}{x}+{c} \\ $$$${so}\:{option}\:{b}\:{is}\:{answer} \\ $$

Commented by rahul 19 last updated on 01/Feb/19

thank you sir!

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Feb/19

most welcome...

$${most}\:{welcome}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Feb/19

is there any short trick to get answer...then  how these type of question can be solved in short time..

$${is}\:{there}\:{any}\:{short}\:{trick}\:{to}\:{get}\:{answer}...{then} \\ $$$${how}\:{these}\:{type}\:{of}\:{question}\:{can}\:{be}\:{solved}\:{in}\:{short}\:{time}.. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 02/Feb/19

thank you

$${thank}\:{you} \\ $$

Commented by rahul 19 last updated on 02/Feb/19

sir, i′ve posted ans. of those integrals.  do check!

$${sir},\:{i}'{ve}\:{posted}\:{ans}.\:{of}\:{those}\:{integrals}. \\ $$$${do}\:{check}! \\ $$

Commented by rahul 19 last updated on 03/Feb/19

Q. No.= 54248

$${Q}.\:{No}.=\:\mathrm{54248} \\ $$

Answered by ajfour last updated on 01/Feb/19

f ′′(x)=f ′(x)  ⇒ f ′(x)=Ae^x     f(x)=Ae^x +b    f(0)=A+b =1  ⇒ b=1−A    f ′(x)= f(x)+∫_0 ^(  1) f(x)dx  ⇒    Ae^x =Ae^x +b+A(e−1)+b  but b=1−A  ⇒  2−2A+Ae−A=0  ⇒  A= (2/(3−e))   , hence  ⇒  f(x)=((2e^x )/(3−e))+1−(2/(3−e))  f(x)= ((2e^x +1−e)/(3−e))

$${f}\:''\left({x}\right)={f}\:'\left({x}\right) \\ $$$$\Rightarrow\:{f}\:'\left({x}\right)={Ae}^{{x}} \\ $$$$\:\:{f}\left({x}\right)={Ae}^{{x}} +{b} \\ $$$$\:\:{f}\left(\mathrm{0}\right)={A}+{b}\:=\mathrm{1}\:\:\Rightarrow\:{b}=\mathrm{1}−{A} \\ $$$$\:\:{f}\:'\left({x}\right)=\:{f}\left({x}\right)+\int_{\mathrm{0}} ^{\:\:\mathrm{1}} {f}\left({x}\right){dx}\:\:\Rightarrow \\ $$$$\:\:{Ae}^{{x}} ={Ae}^{{x}} +{b}+{A}\left({e}−\mathrm{1}\right)+{b} \\ $$$${but}\:{b}=\mathrm{1}−{A} \\ $$$$\Rightarrow\:\:\mathrm{2}−\mathrm{2}{A}+{Ae}−{A}=\mathrm{0} \\ $$$$\Rightarrow\:\:\boldsymbol{{A}}=\:\frac{\mathrm{2}}{\mathrm{3}−{e}}\:\:\:,\:{hence} \\ $$$$\Rightarrow\:\:{f}\left({x}\right)=\frac{\mathrm{2}{e}^{{x}} }{\mathrm{3}−{e}}+\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}−{e}} \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{2}{e}^{{x}} +\mathrm{1}−{e}}{\mathrm{3}−{e}}\:\: \\ $$

Commented by ajfour last updated on 02/Feb/19

I must have made mistake, please  help..

$${I}\:{must}\:{have}\:{made}\:{mistake},\:{please} \\ $$$${help}..\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by rahul 19 last updated on 02/Feb/19

Sir, how can you say f^′ (x)=Ae^x  is the  only possibility?

$${Sir},\:{how}\:{can}\:{you}\:{say}\:{f}\:^{'} \left({x}\right)={Ae}^{{x}} \:{is}\:{the} \\ $$$${only}\:{possibility}? \\ $$

Commented by ajfour last updated on 02/Feb/19

f ′′(x)=f ′(x)  ⇒  ∫((f ′′(x)dx)/(f ′(x)))=∫dx  ⇒ ln f ′(x)=x+c  ⇒ f ′(x)=e^x e^c  = Ae^x  .

$${f}\:''\left({x}\right)={f}\:'\left({x}\right) \\ $$$$\Rightarrow\:\:\int\frac{{f}\:''\left({x}\right){dx}}{{f}\:'\left({x}\right)}=\int{dx} \\ $$$$\Rightarrow\:\mathrm{ln}\:{f}\:'\left({x}\right)={x}+{c} \\ $$$$\Rightarrow\:{f}\:'\left({x}\right)={e}^{{x}} {e}^{{c}} \:=\:{Ae}^{{x}} \:. \\ $$

Commented by rahul 19 last updated on 03/Feb/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com