Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 54289 by ajfour last updated on 01/Feb/19

Commented by ajfour last updated on 01/Feb/19

Find u such that upper block topples,  if particle of mass m hits elastically.  Also find where the particle  hits the ground.

$${Find}\:{u}\:{such}\:{that}\:{upper}\:{block}\:{topples}, \\ $$$${if}\:{particle}\:{of}\:{mass}\:{m}\:{hits}\:{elastically}. \\ $$$$\boldsymbol{{Also}}\:\boldsymbol{{find}}\:\boldsymbol{{where}}\:\boldsymbol{{the}}\:\boldsymbol{{particle}} \\ $$$$\boldsymbol{{hits}}\:\boldsymbol{{the}}\:\boldsymbol{{ground}}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Feb/19

from youtube i saw this video...excellent explanation  hence attached...

$${from}\:{youtube}\:{i}\:{saw}\:{this}\:{video}...{excellent}\:{explanation} \\ $$$${hence}\:{attached}... \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Feb/19

Commented by mr W last updated on 01/Feb/19

u≥5(√((3μgb)/2)) ?

$${u}\geqslant\mathrm{5}\sqrt{\frac{\mathrm{3}\mu{gb}}{\mathrm{2}}}\:? \\ $$

Commented by ajfour last updated on 01/Feb/19

given u=(5/2)(√(μgb))  ; but just now i  got the same result as yours Sir.

$${given}\:{u}=\frac{\mathrm{5}}{\mathrm{2}}\sqrt{\mu{gb}}\:\:;\:{but}\:{just}\:{now}\:{i} \\ $$$${got}\:{the}\:{same}\:{result}\:{as}\:{yours}\:{Sir}. \\ $$

Answered by mr W last updated on 02/Feb/19

such that the upper block topples,  the lower block must move at least  a distance of s=2b after the hit.  in this distance the friction force  is f=μ(2m+4m)g=6μmg and the  energy lost due to friction is fs,  i.e. 6μmg×2b=12μmgb. that it to say  the lower block must have a kinetic  energy of at least 12μmgb after the hit.  KE=(1/2)(4m)v^2 ≥12μmgb  ⇒v=(√(6μgb))=velocity of lower block after hit  let u_1 =velocity of particle after hit (←)  u=u_1 +v  since mu=−mu_1 +4mv,  ⇒u=−u_1 +4v  ⇒u=−(u−v)+4v  ⇒2u=5v  ⇒u=((5v)/2)≥(5/2)(√(6μgb))=5(√((3μgb)/2))    u_1 =u−v=((5v)/2)−v=((3v)/2)=3(√((3μgb)/2))  position where particle hits the ground:  d=u_1 (√((2b)/g))=3(√(3μ))b

$${such}\:{that}\:{the}\:{upper}\:{block}\:{topples}, \\ $$$${the}\:{lower}\:{block}\:{must}\:{move}\:{at}\:{least} \\ $$$${a}\:{distance}\:{of}\:{s}=\mathrm{2}{b}\:{after}\:{the}\:{hit}. \\ $$$${in}\:{this}\:{distance}\:{the}\:{friction}\:{force} \\ $$$${is}\:{f}=\mu\left(\mathrm{2}{m}+\mathrm{4}{m}\right){g}=\mathrm{6}\mu{mg}\:{and}\:{the} \\ $$$${energy}\:{lost}\:{due}\:{to}\:{friction}\:{is}\:{fs}, \\ $$$${i}.{e}.\:\mathrm{6}\mu{mg}×\mathrm{2}{b}=\mathrm{12}\mu{mgb}.\:{that}\:{it}\:{to}\:{say} \\ $$$${the}\:{lower}\:{block}\:{must}\:{have}\:{a}\:{kinetic} \\ $$$${energy}\:{of}\:{at}\:{least}\:\mathrm{12}\mu{mgb}\:{after}\:{the}\:{hit}. \\ $$$${KE}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}{m}\right){v}^{\mathrm{2}} \geqslant\mathrm{12}\mu{mgb} \\ $$$$\Rightarrow{v}=\sqrt{\mathrm{6}\mu{gb}}={velocity}\:{of}\:{lower}\:{block}\:{after}\:{hit} \\ $$$${let}\:{u}_{\mathrm{1}} ={velocity}\:{of}\:{particle}\:{after}\:{hit}\:\left(\leftarrow\right) \\ $$$${u}={u}_{\mathrm{1}} +{v} \\ $$$${since}\:{mu}=−{mu}_{\mathrm{1}} +\mathrm{4}{mv}, \\ $$$$\Rightarrow{u}=−{u}_{\mathrm{1}} +\mathrm{4}{v} \\ $$$$\Rightarrow{u}=−\left({u}−{v}\right)+\mathrm{4}{v} \\ $$$$\Rightarrow\mathrm{2}{u}=\mathrm{5}{v} \\ $$$$\Rightarrow{u}=\frac{\mathrm{5}{v}}{\mathrm{2}}\geqslant\frac{\mathrm{5}}{\mathrm{2}}\sqrt{\mathrm{6}\mu{gb}}=\mathrm{5}\sqrt{\frac{\mathrm{3}\mu{gb}}{\mathrm{2}}} \\ $$$$ \\ $$$${u}_{\mathrm{1}} ={u}−{v}=\frac{\mathrm{5}{v}}{\mathrm{2}}−{v}=\frac{\mathrm{3}{v}}{\mathrm{2}}=\mathrm{3}\sqrt{\frac{\mathrm{3}\mu{gb}}{\mathrm{2}}} \\ $$$${position}\:{where}\:{particle}\:{hits}\:{the}\:{ground}: \\ $$$${d}={u}_{\mathrm{1}} \sqrt{\frac{\mathrm{2}{b}}{{g}}}=\mathrm{3}\sqrt{\mathrm{3}\mu}{b} \\ $$

Commented by ajfour last updated on 01/Feb/19

i have got to know     d= 6b(√(3μ))  .

$${i}\:{have}\:{got}\:{to}\:{know}\: \\ $$$$\:\:{d}=\:\mathrm{6}{b}\sqrt{\mathrm{3}\mu}\:\:. \\ $$

Commented by mr W last updated on 01/Feb/19

please check sir!  h=b=((gt^2 )/2)  d=u_1 t=u_1 (√((2b)/g))=3(√(((3μgb)/2)×((2b)/g)))=3(√(3μ))b

$${please}\:{check}\:{sir}! \\ $$$${h}={b}=\frac{{gt}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${d}={u}_{\mathrm{1}} {t}={u}_{\mathrm{1}} \sqrt{\frac{\mathrm{2}{b}}{{g}}}=\mathrm{3}\sqrt{\frac{\mathrm{3}\mu{gb}}{\mathrm{2}}×\frac{\mathrm{2}{b}}{{g}}}=\mathrm{3}\sqrt{\mathrm{3}\mu}{b} \\ $$

Commented by ajfour last updated on 01/Feb/19

sorry sir, it was asked if velocity  of particle were double of previously  found min. velocity, where would it  hit the ground ?

$${sorry}\:{sir},\:{it}\:{was}\:{asked}\:{if}\:{velocity} \\ $$$${of}\:{particle}\:{were}\:{double}\:{of}\:{previously} \\ $$$${found}\:{min}.\:{velocity},\:{where}\:{would}\:{it} \\ $$$${hit}\:{the}\:{ground}\:? \\ $$

Commented by ajfour last updated on 01/Feb/19

As per my posted question , all your  results and explanation, i believe  are correct, Sir.Thanks again!

$${As}\:{per}\:{my}\:{posted}\:{question}\:,\:{all}\:{your} \\ $$$${results}\:{and}\:{explanation},\:{i}\:{believe} \\ $$$${are}\:{correct},\:{Sir}.{Thanks}\:{again}! \\ $$

Answered by ajfour last updated on 01/Feb/19

mu=4mV−mv  u=V+v  ⇒  u= 4V+V−u  ⇒  V = ((2u)/5)  (1/2)(4m)V^(  2) ≥ μ(6mg)(2b)  ⇒ 2(((2u)/5))^2  ≥ 12μgb  ⇒  u ≥ 5(√((3μgb)/2)) .

$${mu}=\mathrm{4}{mV}−{mv} \\ $$$${u}={V}+{v} \\ $$$$\Rightarrow\:\:{u}=\:\mathrm{4}{V}+{V}−{u} \\ $$$$\Rightarrow\:\:{V}\:=\:\frac{\mathrm{2}{u}}{\mathrm{5}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}{m}\right){V}^{\:\:\mathrm{2}} \geqslant\:\mu\left(\mathrm{6}{mg}\right)\left(\mathrm{2}{b}\right) \\ $$$$\Rightarrow\:\mathrm{2}\left(\frac{\mathrm{2}{u}}{\mathrm{5}}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{12}\mu{gb} \\ $$$$\Rightarrow\:\:{u}\:\geqslant\:\mathrm{5}\sqrt{\frac{\mathrm{3}\mu{gb}}{\mathrm{2}}}\:. \\ $$

Commented by mr W last updated on 01/Feb/19

that is the correct result!

$${that}\:{is}\:{the}\:{correct}\:{result}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com